Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
| import requests | |
| from PIL import Image | |
| processor = TrOCRProcessor.from_pretrained("paran3xus/typress_ocr") | |
| model = VisionEncoderDecoderModel.from_pretrained('paran3xus/typress_ocr') | |
| # load image examples | |
| urls = ["https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/1.png", "https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/2.png", "https://huggingface.co/spaces/paran3xus/typress_ocr_space/resolve/main/test_img/3.png"] | |
| for idx, url in enumerate(urls): | |
| image = Image.open(requests.get(url, stream=True).raw) | |
| image.save(f"image_{idx}.png") | |
| def process_image(image): | |
| # prepare image | |
| pixel_values = processor(image, return_tensors="pt").pixel_values | |
| # generate (no beam search) | |
| generated_ids = model.generate(pixel_values) | |
| # decode | |
| generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return generated_text | |
| title = "Interactive demo: Typress OCR" | |
| description = "Demo for Typress OCR, an TrOCR model for Typst Mathematical Expressions Recognition. To use it, simply upload a image or use one of the example images below and click 'submit'. Results will show up in a few seconds." | |
| article = "<p style='text-align: center'><a href='https://github.com/ParaN3xus/typress'>Github Repo</a></p>" | |
| examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]] | |
| iface = gr.Interface(fn=process_image, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Textbox(), | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples) | |
| iface.launch(debug=True) |