Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 4 |
+
from google.colab import files
|
| 5 |
+
|
| 6 |
+
# device = torch.device("cpu" if torch.cuda.is_available() else "cuda")
|
| 7 |
+
device = torch.device("cpu")
|
| 8 |
+
# Load the GPT-2 model and tokenizer
|
| 9 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
| 10 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 11 |
+
# Add a padding token to the tokenizer
|
| 12 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 13 |
+
|
| 14 |
+
# Move the model to the appropriate device
|
| 15 |
+
model = model.to(device)
|
| 16 |
+
# Upload your documents
|
| 17 |
+
uploaded_files = files.upload()
|
| 18 |
+
training_data = []
|
| 19 |
+
for file_name, content in uploaded_files.items():
|
| 20 |
+
try:
|
| 21 |
+
document = content.decode("utf-8")
|
| 22 |
+
except UnicodeDecodeError:
|
| 23 |
+
document = content.decode("latin-1")
|
| 24 |
+
training_data.append(document)
|
| 25 |
+
# Fine-tuning the GPT-2 model
|
| 26 |
+
tokenized_data = tokenizer('\n\n'.join(training_data), truncation=True, padding=True, max_length=256, return_tensors="pt")
|
| 27 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 28 |
+
|
| 29 |
+
# Define the loss function
|
| 30 |
+
loss_function = torch.nn.CrossEntropyLoss()
|
| 31 |
+
|
| 32 |
+
# Define the training loop
|
| 33 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=3e-5)
|
| 34 |
+
# optimizer = torch.nn.Module(optimizer)
|
| 35 |
+
# optimizer = optimizer.to(device)
|
| 36 |
+
model.train()
|
| 37 |
+
accumulation_steps = 4
|
| 38 |
+
batch_size = 4
|
| 39 |
+
|
| 40 |
+
for epoch in range(3):
|
| 41 |
+
for i in range(0, len(tokenized_data['input_ids']), batch_size):
|
| 42 |
+
input_ids_batch = tokenized_data['input_ids'][i:i + batch_size].to(device, non_blocking=True)
|
| 43 |
+
outputs = model(input_ids_batch)
|
| 44 |
+
logits = outputs.logits
|
| 45 |
+
loss = loss_function(logits.view(-1, model.config.vocab_size), input_ids_batch.view(-1))
|
| 46 |
+
loss.backward()
|
| 47 |
+
optimizer.step()
|
| 48 |
+
optimizer.zero_grad()
|
| 49 |
+
print(f"Epoch: {epoch+1}, Batch: {i+1}/{len(tokenized_data['input_ids'])//batch_size}, Loss: {loss.item()}")
|
| 50 |
+
|
| 51 |
+
if (i + 1) % accumulation_steps == 0:
|
| 52 |
+
optimizer.step()
|
| 53 |
+
optimizer.zero_grad()
|
| 54 |
+
# Start chatting with your trained model
|
| 55 |
+
while True:
|
| 56 |
+
user_input = input("User: ")
|
| 57 |
+
input_ids = tokenizer.encode(user_input, return_tensors='pt').to(device)
|
| 58 |
+
generate = pipeline('text-generation', model='gpt2')
|
| 59 |
+
output = model.generate(input_ids=input_ids, max_length=100, num_return_sequences=1)
|
| 60 |
+
response = tokenizer.decode(output[0])
|
| 61 |
+
print("ChatBot:", response)
|
| 62 |
+
break # Add a condition to break the while loop
|