# 🚀 Quick Deployment Summary ## ✅ Files Created/Updated for Hugging Face Deployment 1. **`.huggingface.yaml`** - Hugging Face Spaces configuration 2. **`Dockerfile`** - Optimized for HF Spaces with CPU-only PyTorch 3. **`requirements-hf.txt`** - Lightweight dependencies for deployment 4. **`app/main.py`** - Added health checks and root endpoints 5. **`.github/workflows/deploy-hf.yml`** - GitHub Actions workflow 6. **`deploy-to-hf.bat`** - Windows deployment helper script 7. **`HUGGINGFACE_DEPLOYMENT.md`** - Complete deployment guide ## 🎯 Quick Deployment Steps ### 1. Push to GitHub ```bash git add . git commit -m "Deploy to Hugging Face Spaces" git push origin main ``` ### 2. Create Hugging Face Space 1. Go to [huggingface.co/spaces](https://huggingface.co/spaces) 2. Click "Create new Space" 3. Settings: - **SDK**: Docker - **License**: MIT - **Connect to your GitHub repo** ### 3. Set Environment Variables In your Space settings, add: ``` GROQ_API_KEY=your_groq_api_key DATABASE_URL=sqlite+aiosqlite:///./dubsway_hf.db SECRET_KEY=your_secret_key ENVIRONMENT=production ``` ### 4. Deploy - Hugging Face will automatically build and deploy - Monitor build logs in your Space - Your API will be available at: `https://your-username-dubsway-video-ai.hf.space/` ## 🔍 Test Your Deployment 1. **Health Check**: `GET /health` 2. **API Docs**: `GET /docs` 3. **Root Endpoint**: `GET /` ## 📞 Need Help? - Run `deploy-to-hf.bat` for step-by-step guidance - Check `HUGGINGFACE_DEPLOYMENT.md` for detailed instructions - Monitor build logs in your Hugging Face Space --- **Your Dubsway Video AI is ready for deployment! 🎉**