# DubswayVideoAI - Error Fixes Summary ## Issues Identified and Fixed ### 1. **Unicode Encoding Errors (Windows Console)** **Problem**: Windows console couldn't display emoji characters (❌, 🎬, 📥, etc.) causing `UnicodeEncodeError: 'charmap' codec can't encode character` **Solution**: - Removed all emoji characters from logging messages - Updated logging configuration to use UTF-8 encoding - Used `sys.stdout` for better encoding support **Files Modified**: - `worker/daemon.py` - Removed emojis from all log messages - `app/utils/whisper_llm.py` - Removed emojis from all log messages ### 2. **FAISS API Compatibility Error** **Problem**: `FAISS.__init__() got an unexpected keyword argument 'allow_dangerous_deserialization'` **Solution**: - Removed the `allow_dangerous_deserialization=True` parameter from FAISS calls - Updated to use the current FAISS API version **Files Modified**: - `app/utils/whisper_llm.py` - Fixed FAISS initialization calls ### 3. **Database Session Management** **Problem**: Linter errors about async session context manager **Solution**: - Updated `app/database.py` to use `async_sessionmaker` instead of `sessionmaker` - Added proper error handling and connection pooling - Added database initialization and cleanup functions **Files Modified**: - `app/database.py` - Complete rewrite with modern SQLAlchemy 2.0+ patterns ### 4. **Video Processing Errors** **Problem**: "tuple index out of range" errors in video processing **Solution**: - Added proper temp file cleanup in error cases - Improved error handling in video download and processing - Added better exception handling with cleanup **Files Modified**: - `app/utils/whisper_llm.py` - Added temp file cleanup and better error handling ### 5. **Missing Dependencies** **Problem**: Missing SQLite support for development **Solution**: - Added `aiosqlite` to requirements.txt for SQLite support **Files Modified**: - `requirements.txt` - Added aiosqlite dependency ## Improved Features ### 1. **Better Logging** - UTF-8 encoded log files - Structured logging format - Separate log file for worker (`worker.log`) ### 2. **Graceful Shutdown** - Signal handling for SIGINT and SIGTERM - Proper cleanup of database connections - Graceful worker loop termination ### 3. **Database Management** - Automatic database initialization - Connection pooling with health checks - Proper async session management ### 4. **Error Recovery** - Better error handling in all processing steps - Automatic cleanup of temporary files - Status tracking for failed videos ## How to Run ### 1. **Activate Virtual Environment** ```bash myenv31\Scripts\Activate.ps1 # PowerShell # or myenv31\Scripts\activate.bat # Command Prompt ``` ### 2. **Install Dependencies** ```bash pip install -r requirements.txt ``` ### 3. **Run the Daemon** ```bash # From project root python -m worker.daemon # Or use the batch script start-worker.bat ``` ### 4. **Test Setup** ```bash python test_daemon.py ``` ## Environment Configuration Create a `.env` file based on `env.example`: ```bash # Database Configuration DATABASE_URL=sqlite+aiosqlite:///./dubsway_dev.db # OpenAI Configuration OPENAI_API_KEY=your_openai_api_key_here # AWS S3 Configuration (if using S3) AWS_ACCESS_KEY_ID=your_aws_access_key AWS_SECRET_ACCESS_KEY=your_aws_secret_key AWS_REGION=us-east-1 S3_BUCKET_NAME=your_s3_bucket_name ``` ## Key Improvements 1. **Windows Compatibility**: Fixed all Unicode encoding issues 2. **Modern SQLAlchemy**: Updated to use async_sessionmaker 3. **Better Error Handling**: Comprehensive error handling with cleanup 4. **Resource Management**: Proper cleanup of temporary files and connections 5. **Logging**: Structured logging without emoji characters 6. **Graceful Shutdown**: Proper signal handling and cleanup ## Testing The daemon should now: - Start without Unicode errors - Handle video processing errors gracefully - Clean up resources properly - Log messages clearly without encoding issues - Shutdown gracefully on Ctrl+C ## Next Steps 1. Test with actual video files 2. Monitor the `worker.log` file for any remaining issues 3. Configure production database (PostgreSQL) if needed 4. Set up proper environment variables for production