Spaces:
Runtime error
Runtime error
Commit
·
3efe6ac
1
Parent(s):
c38177b
Create helpers.py
Browse files- helpers.py +445 -0
helpers.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import tensorflow_io as tfio
|
| 6 |
+
import csv
|
| 7 |
+
from scipy.io import wavfile
|
| 8 |
+
import scipy
|
| 9 |
+
import librosa
|
| 10 |
+
import soundfile as sf
|
| 11 |
+
import time
|
| 12 |
+
import soundfile as sf
|
| 13 |
+
import gradio as gr
|
| 14 |
+
|
| 15 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 16 |
+
from transformers import AutoProcessor
|
| 17 |
+
from transformers import BarkModel
|
| 18 |
+
from optimum.bettertransformer import BetterTransformer
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
from nemo.collections.tts.models import FastPitchModel
|
| 22 |
+
|
| 23 |
+
from nemo.collections.tts.models import HifiGanModel
|
| 24 |
+
|
| 25 |
+
from deep_translator import GoogleTranslator
|
| 26 |
+
from haystack.document_stores import InMemoryDocumentStore
|
| 27 |
+
from haystack.nodes import EmbeddingRetriever
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# --- Load models ---
|
| 31 |
+
|
| 32 |
+
#Load a model from tensorflow hub
|
| 33 |
+
def load_model_hub(model_url):
|
| 34 |
+
model = hub.load(model_url)
|
| 35 |
+
return model
|
| 36 |
+
|
| 37 |
+
# Load a model from the project folder
|
| 38 |
+
def load_model_file(model_path):
|
| 39 |
+
interpreter = tf.lite.Interpreter(model_path)
|
| 40 |
+
interpreter.allocate_tensors()
|
| 41 |
+
return interpreter
|
| 42 |
+
|
| 43 |
+
# --- Initialize models ---
|
| 44 |
+
|
| 45 |
+
def initialize_text_to_speech_model():
|
| 46 |
+
spec_generator = FastPitchModel.from_pretrained("nvidia/tts_en_fastpitch")
|
| 47 |
+
# Load vocoder
|
| 48 |
+
model = HifiGanModel.from_pretrained(model_name="nvidia/tts_hifigan")
|
| 49 |
+
return spec_generator, model
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def initialize_tt5_model():
|
| 53 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
|
| 54 |
+
from datasets import load_dataset
|
| 55 |
+
|
| 56 |
+
dataset = load_dataset("pedropauletti/librispeech-portuguese")
|
| 57 |
+
|
| 58 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("pedropauletti/speecht5_finetuned_librispeech_pt")
|
| 59 |
+
|
| 60 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
| 61 |
+
|
| 62 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 63 |
+
|
| 64 |
+
example = dataset["test"][100]
|
| 65 |
+
speaker_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
|
| 66 |
+
|
| 67 |
+
return model, processor, vocoder, speaker_embeddings
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def load_qa_model():
|
| 71 |
+
document_store = InMemoryDocumentStore()
|
| 72 |
+
retriever = EmbeddingRetriever(
|
| 73 |
+
document_store=document_store,
|
| 74 |
+
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
| 75 |
+
use_gpu=False,
|
| 76 |
+
scale_score=False,
|
| 77 |
+
)
|
| 78 |
+
# Get dataframe with columns "question", "answer" and some custom metadata
|
| 79 |
+
df = pd.read_csv('content/social-faq.csv', on_bad_lines='skip', delimiter=';')
|
| 80 |
+
# Minimal cleaning
|
| 81 |
+
df.fillna(value="", inplace=True)
|
| 82 |
+
df["question"] = df["question"].apply(lambda x: x.strip())
|
| 83 |
+
|
| 84 |
+
questions = list(df["question"].values)
|
| 85 |
+
df["embedding"] = retriever.embed_queries(queries=questions).tolist()
|
| 86 |
+
df = df.rename(columns={"question": "content"})
|
| 87 |
+
|
| 88 |
+
# Convert Dataframe to list of dicts and index them in our DocumentStore
|
| 89 |
+
docs_to_index = df.to_dict(orient="records")
|
| 90 |
+
document_store.write_documents(docs_to_index)
|
| 91 |
+
|
| 92 |
+
return retriever
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# --- Audio pre-processing ---
|
| 96 |
+
|
| 97 |
+
# Utility functions for loading audio files and making sure the sample rate is correct.
|
| 98 |
+
@tf.function
|
| 99 |
+
def load_wav_16k_mono(filename):
|
| 100 |
+
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio. """
|
| 101 |
+
file_contents = tf.io.read_file(filename)
|
| 102 |
+
wav, sample_rate = tf.audio.decode_wav(
|
| 103 |
+
file_contents,
|
| 104 |
+
desired_channels=1)
|
| 105 |
+
wav = tf.squeeze(wav, axis=-1)
|
| 106 |
+
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
|
| 107 |
+
wav = tfio.audio.resample(wav, rate_in=sample_rate, rate_out=16000)
|
| 108 |
+
return wav
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def load_wav_16k_mono_librosa(filename):
|
| 112 |
+
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio using librosa. """
|
| 113 |
+
wav, sample_rate = librosa.load(filename, sr=16000, mono=True)
|
| 114 |
+
return wav
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def load_wav_16k_mono_soundfile(filename):
|
| 118 |
+
""" Load a WAV file, convert it to a float tensor, resample to 16 kHz single-channel audio using soundfile. """
|
| 119 |
+
wav, sample_rate = sf.read(filename, dtype='float32')
|
| 120 |
+
# Resample to 16 kHz if necessary
|
| 121 |
+
if sample_rate != 16000:
|
| 122 |
+
wav = librosa.resample(wav, orig_sr=sample_rate, target_sr=16000)
|
| 123 |
+
return wav
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# --- History ---
|
| 127 |
+
def updateHistory():
|
| 128 |
+
global history
|
| 129 |
+
return history
|
| 130 |
+
|
| 131 |
+
def clearHistory():
|
| 132 |
+
global history
|
| 133 |
+
history = ""
|
| 134 |
+
return history
|
| 135 |
+
|
| 136 |
+
def clear():
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
# --- Output Format ---
|
| 140 |
+
|
| 141 |
+
def format_dictionary(dictionary):
|
| 142 |
+
result = []
|
| 143 |
+
for key, value in dictionary.items():
|
| 144 |
+
percentage = int(value * 100)
|
| 145 |
+
result.append(f"{key}: {percentage}%")
|
| 146 |
+
return ', '.join(result)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def format_json(json_data):
|
| 150 |
+
confidence_strings = [f"{item['label']}: {round(item['confidence']*100)}%" for item in json_data['confidences']]
|
| 151 |
+
result_string = f"{', '.join(confidence_strings)}"
|
| 152 |
+
return result_string
|
| 153 |
+
|
| 154 |
+
def format_json_pt(json_data):
|
| 155 |
+
from unidecode import unidecode
|
| 156 |
+
confidence_strings = [f"{item['label']}... " for item in json_data['confidences']]
|
| 157 |
+
result_string = f"{', '.join(confidence_strings)}"
|
| 158 |
+
return unidecode(result_string)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
# --- Classification ---
|
| 162 |
+
|
| 163 |
+
def load_label_mapping(csv_path):
|
| 164 |
+
label_mapping = {}
|
| 165 |
+
with open(csv_path, newline='', encoding='utf-8') as csvfile:
|
| 166 |
+
reader = csv.DictReader(csvfile)
|
| 167 |
+
for row in reader:
|
| 168 |
+
label_mapping[int(row['index'])] = row['display_name']
|
| 169 |
+
return label_mapping
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def predict_yamnet(interpreter, waveform, input_details, output_details, label_mapping):
|
| 173 |
+
# Pré-processamento da waveform para corresponder aos requisitos do modelo
|
| 174 |
+
input_shape = input_details[0]['shape']
|
| 175 |
+
input_data = np.array(waveform, dtype=np.float32)
|
| 176 |
+
|
| 177 |
+
if input_data.shape != input_shape:
|
| 178 |
+
# Redimensionar ou preencher a waveform para corresponder ao tamanho esperado
|
| 179 |
+
if input_data.shape[0] < input_shape[0]:
|
| 180 |
+
# Preencher a waveform com zeros
|
| 181 |
+
padding = np.zeros((input_shape[0] - input_data.shape[0],))
|
| 182 |
+
input_data = np.concatenate((input_data, padding))
|
| 183 |
+
elif input_data.shape[0] > input_shape[0]:
|
| 184 |
+
# Redimensionar a waveform
|
| 185 |
+
input_data = input_data[:input_shape[0]]
|
| 186 |
+
|
| 187 |
+
input_data = np.reshape(input_data, input_shape)
|
| 188 |
+
|
| 189 |
+
# Executar a inferência
|
| 190 |
+
interpreter.set_tensor(input_details[0]['index'], input_data)
|
| 191 |
+
interpreter.invoke()
|
| 192 |
+
|
| 193 |
+
# Obter os resultados da inferência
|
| 194 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
| 195 |
+
|
| 196 |
+
# Processar os resultados e imprimir nome da etiqueta
|
| 197 |
+
top_labels_indices = np.argsort(output_data[0])[::-1][:3]
|
| 198 |
+
results = []
|
| 199 |
+
for i in top_labels_indices:
|
| 200 |
+
label_name = label_mapping.get(i, "Unknown Label")
|
| 201 |
+
probability = float(output_data[0][i]) # Converter para float
|
| 202 |
+
results.append({'label': label_name, 'probability': str(probability)})
|
| 203 |
+
|
| 204 |
+
return results # Retornar um dicionário contendo a lista de resultados
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def classify(audio, language="en-us"):
|
| 208 |
+
#Preprocessing audio
|
| 209 |
+
wav_data = load_wav_16k_mono_librosa(audio)
|
| 210 |
+
|
| 211 |
+
if(language == "pt-br"):
|
| 212 |
+
#Label Mapping
|
| 213 |
+
label_mapping = load_label_mapping('content/yamnet_class_map_ptbr.csv')
|
| 214 |
+
else:
|
| 215 |
+
label_mapping = load_label_mapping('content/yamnet_class_map.csv')
|
| 216 |
+
|
| 217 |
+
#Load Model by File
|
| 218 |
+
model = load_model_file('content/yamnet_classification.tflite')
|
| 219 |
+
input_details = model.get_input_details()
|
| 220 |
+
output_details = model.get_output_details()
|
| 221 |
+
|
| 222 |
+
#Classification
|
| 223 |
+
result = predict_yamnet(model, wav_data, input_details, output_details, label_mapping)
|
| 224 |
+
|
| 225 |
+
return result
|
| 226 |
+
|
| 227 |
+
def classify_realtime(language, audio, state):
|
| 228 |
+
#Preprocessing audio
|
| 229 |
+
wav_data = load_wav_16k_mono_librosa(audio)
|
| 230 |
+
|
| 231 |
+
if(language == "pt-br"):
|
| 232 |
+
#Label Mapping
|
| 233 |
+
label_mapping = load_label_mapping('content/yamnet_class_map_ptbr.csv')
|
| 234 |
+
else:
|
| 235 |
+
label_mapping = load_label_mapping('content/yamnet_class_map.csv')
|
| 236 |
+
|
| 237 |
+
#Load Model by File
|
| 238 |
+
model = load_model_file('content/yamnet_classification.tflite')
|
| 239 |
+
input_details = model.get_input_details()
|
| 240 |
+
output_details = model.get_output_details()
|
| 241 |
+
|
| 242 |
+
#Classification
|
| 243 |
+
result = predict_yamnet(model, wav_data, input_details, output_details, label_mapping)
|
| 244 |
+
|
| 245 |
+
state += result + " "
|
| 246 |
+
|
| 247 |
+
return result, state
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# --- TTS ---
|
| 251 |
+
|
| 252 |
+
def generate_audio(spec_generator, model, input_text):
|
| 253 |
+
parsed = spec_generator.parse(input_text)
|
| 254 |
+
spectrogram = spec_generator.generate_spectrogram(tokens=parsed)
|
| 255 |
+
audio = model.convert_spectrogram_to_audio(spec=spectrogram)
|
| 256 |
+
return 22050, audio.cpu().detach().numpy().squeeze()
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def generate_audio_tt5(model, processor, vocoder, speaker_embeddings, text):
|
| 260 |
+
inputs = processor(text=text, return_tensors="pt")
|
| 261 |
+
audio = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
| 262 |
+
return 16000, audio.cpu().detach().numpy().squeeze()
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
def TTS(json_input, language):
|
| 267 |
+
global spec_generator, model_nvidia, history
|
| 268 |
+
global model_tt5, processor, vocoder, speaker_embeddings
|
| 269 |
+
|
| 270 |
+
if language == 'en-us':
|
| 271 |
+
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, format_json(json_input))
|
| 272 |
+
else:
|
| 273 |
+
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, format_json_pt(json_input))
|
| 274 |
+
|
| 275 |
+
return (sr, generatedAudio)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def TTS_ASR(json_input, language):
|
| 279 |
+
global spec_generator, model_nvidia, history
|
| 280 |
+
global model_tt5, processor, vocoder, speaker_embeddings
|
| 281 |
+
|
| 282 |
+
if language == 'en-us':
|
| 283 |
+
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, json_input['label'])
|
| 284 |
+
else:
|
| 285 |
+
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, json_input['label'])
|
| 286 |
+
|
| 287 |
+
return (sr, generatedAudio)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def TTS_chatbot(language):
|
| 291 |
+
global spec_generator, model_nvidia, history
|
| 292 |
+
global model_tt5, processor, vocoder, speaker_embeddings
|
| 293 |
+
global last_answer
|
| 294 |
+
|
| 295 |
+
if language == 'en-us':
|
| 296 |
+
sr, generatedAudio = generate_audio(spec_generator, model_nvidia, last_answer)
|
| 297 |
+
else:
|
| 298 |
+
sr, generatedAudio = generate_audio_tt5(model_tt5, processor, vocoder, speaker_embeddings, last_answer)
|
| 299 |
+
|
| 300 |
+
return (sr, generatedAudio)
|
| 301 |
+
|
| 302 |
+
# --- ASR ---
|
| 303 |
+
|
| 304 |
+
def transcribe_speech(filepath, language):
|
| 305 |
+
print(filepath)
|
| 306 |
+
if(language == "pt-br"):
|
| 307 |
+
output = pipe(
|
| 308 |
+
filepath,
|
| 309 |
+
max_new_tokens=256,
|
| 310 |
+
generate_kwargs={
|
| 311 |
+
"task": "transcribe",
|
| 312 |
+
"language": "portuguese",
|
| 313 |
+
},
|
| 314 |
+
chunk_length_s=30,
|
| 315 |
+
batch_size=8,
|
| 316 |
+
)
|
| 317 |
+
else:
|
| 318 |
+
output = pipe_en(
|
| 319 |
+
filepath,
|
| 320 |
+
max_new_tokens=256,
|
| 321 |
+
generate_kwargs={
|
| 322 |
+
"task": "transcribe",
|
| 323 |
+
"language": "english",
|
| 324 |
+
},
|
| 325 |
+
chunk_length_s=30,
|
| 326 |
+
batch_size=8,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
return output["text"]
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
def transcribe_speech_realtime(filepath, state):
|
| 334 |
+
output = pipe(
|
| 335 |
+
filepath,
|
| 336 |
+
max_new_tokens=256,
|
| 337 |
+
generate_kwargs={
|
| 338 |
+
"task": "transcribe",
|
| 339 |
+
"language": "english",
|
| 340 |
+
},
|
| 341 |
+
chunk_length_s=30,
|
| 342 |
+
batch_size=8,
|
| 343 |
+
)
|
| 344 |
+
state += output["text"] + " "
|
| 345 |
+
return output["text"], state
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def transcribe_realtime(new_chunk, stream):
|
| 349 |
+
sr, y = new_chunk
|
| 350 |
+
y = y.astype(np.float32)
|
| 351 |
+
y /= np.max(np.abs(y))
|
| 352 |
+
|
| 353 |
+
if stream is not None:
|
| 354 |
+
stream = np.concatenate([stream, y])
|
| 355 |
+
else:
|
| 356 |
+
stream = y
|
| 357 |
+
return stream, pipe_en({"sampling_rate": sr, "raw": stream})["text"]
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
# --- Translation ---
|
| 361 |
+
|
| 362 |
+
def translate_enpt(text):
|
| 363 |
+
global enpt_pipeline
|
| 364 |
+
translation = enpt_pipeline(f"translate English to Portuguese: {text}")
|
| 365 |
+
return translation[0]['generated_text']
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# --- Gradio Interface ---
|
| 369 |
+
|
| 370 |
+
def interface(language, audio):
|
| 371 |
+
global classificationResult
|
| 372 |
+
result = classify(language, audio)
|
| 373 |
+
dic = {result[0]['label']: float(result[0]['probability']),
|
| 374 |
+
result[1]['label']: float(result[1]['probability']),
|
| 375 |
+
result[2]['label']: float(result[2]['probability'])
|
| 376 |
+
}
|
| 377 |
+
# history += result[0]['label'] + '\n'
|
| 378 |
+
classificationResult = dic
|
| 379 |
+
|
| 380 |
+
return dic
|
| 381 |
+
|
| 382 |
+
def interface_realtime(language, audio):
|
| 383 |
+
global history
|
| 384 |
+
result = classify(language, audio)
|
| 385 |
+
dic = {result[0]['label']: float(result[0]['probability']),
|
| 386 |
+
result[1]['label']: float(result[1]['probability']),
|
| 387 |
+
result[2]['label']: float(result[2]['probability'])
|
| 388 |
+
}
|
| 389 |
+
history = result[0]['label'] + '\n' + history
|
| 390 |
+
return dic
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
# --- QA Model ---
|
| 395 |
+
|
| 396 |
+
def get_answers(retriever, query):
|
| 397 |
+
from haystack.pipelines import FAQPipeline
|
| 398 |
+
|
| 399 |
+
pipe = FAQPipeline(retriever=retriever)
|
| 400 |
+
|
| 401 |
+
from haystack.utils import print_answers
|
| 402 |
+
|
| 403 |
+
# Run any question and change top_k to see more or less answers
|
| 404 |
+
prediction = pipe.run(query=query, params={"Retriever": {"top_k": 1}})
|
| 405 |
+
|
| 406 |
+
answers = prediction['answers']
|
| 407 |
+
|
| 408 |
+
if answers:
|
| 409 |
+
return answers[0].answer
|
| 410 |
+
else:
|
| 411 |
+
return "I don't have an answer to that question"
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
def add_text(chat_history, text):
|
| 415 |
+
chat_history = chat_history + [(text, None)]
|
| 416 |
+
return chat_history, gr.Textbox(value="", interactive=False)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def chatbot_response(chat_history, language):
|
| 420 |
+
|
| 421 |
+
chat_history[-1][1] = ""
|
| 422 |
+
|
| 423 |
+
global retriever
|
| 424 |
+
global last_answer
|
| 425 |
+
|
| 426 |
+
if language == 'pt-br':
|
| 427 |
+
response = get_answers(retriever, GoogleTranslator(source='pt', target='en').translate(chat_history[-1][0]))
|
| 428 |
+
response = GoogleTranslator(source='en', target='pt').translate(response)
|
| 429 |
+
else:
|
| 430 |
+
response = get_answers(retriever, chat_history[-1][0])
|
| 431 |
+
|
| 432 |
+
last_answer = response
|
| 433 |
+
|
| 434 |
+
for character in response:
|
| 435 |
+
chat_history[-1][1] += character
|
| 436 |
+
time.sleep(0.01)
|
| 437 |
+
yield chat_history
|
| 438 |
+
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
retriever = load_qa_model()
|
| 442 |
+
spec_generator, model_nvidia = initialize_text_to_speech_model()
|
| 443 |
+
model_tt5, processor, vocoder, speaker_embeddings = initialize_tt5_model()
|
| 444 |
+
pipe = pipeline("automatic-speech-recognition", model="pedropauletti/whisper-small-pt")
|
| 445 |
+
pipe_en = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|