# Copyright 2025-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for PEFT benchmarking. """ import datetime import json import os import platform import subprocess from dataclasses import asdict, dataclass, field from enum import Enum from typing import Any, Callable, Optional from peft.utils import infer_device import psutil import torch FILE_NAME_BENCHMARK_PARAMS = "benchmark_params.json" FILE_NAME_DEFAULT_CONFIG = "default_benchmark_params.json" RESULT_PATH = os.path.join(os.path.dirname(__file__), "results") RESULT_PATH_TEMP = os.path.join(os.path.dirname(__file__), "temporary_results") RESULT_PATH_CANCELLED = os.path.join(os.path.dirname(__file__), "cancelled_results") class BenchmarkStatus(Enum): """Status of a benchmark run.""" SUCCESS = "success" FAILED = "failed" CANCELLED = "cancelled" RUNNING = "running" @dataclass class BenchmarkResult: """Container for benchmark results.""" experiment_name: str status: BenchmarkStatus model_id: str run_info: dict = field(default_factory=dict) generation_info: dict = field(default_factory=dict) meta_info: dict = field(default_factory=dict) def __post_init__(self): """Initialize structured data format.""" device = infer_device() torch_accelerator_module = getattr(torch, device, torch.cuda) self.run_info = { "timestamp": datetime.datetime.now(tz=datetime.timezone.utc).isoformat(), "duration": 0.0, "status": self.status.value, "hardware": { "num_accelerators": torch_accelerator_module.device_count() if torch_accelerator_module.is_available() else 0, "accelerator_type": torch_accelerator_module.get_device_name(0) if torch_accelerator_module.is_available() else "N/A", "cuda_version": torch.version.cuda if torch.cuda.is_available() else "N/A", "pytorch_version": torch.__version__, }, } self.meta_info = { "model_id": self.model_id, "parameters": { "base_params": 0, "trainable_params": 0, "total_params": 0, "param_ratio": 0.0, }, "model_size": { "base_model_size_mb": 0.0, "adapter_size_mb": 0.0, }, "package_info": { "transformers-version": None, "transformers-commit-hash": None, "peft-version": None, "peft-commit-hash": None, "datasets-version": None, "datasets-commit-hash": None, "bitsandbytes-version": None, "bitsandbytes-commit-hash": None, "torch-version": torch.__version__, "torch-commit-hash": None, }, "system_info": { "system": platform.system(), "release": platform.release(), "version": platform.version(), "machine": platform.machine(), "processor": platform.processor(), "accelerator": torch_accelerator_module.get_device_name(0) if torch_accelerator_module.is_available() else "N/A", }, } self.generation_info = { "memory": { "peak_accelerator_memory_mb": 0.0, "peak_ram_memory_mb": 0.0, "memory_logs": [], }, "by_category": {}, "overall": {}, } def update_meta_info(self, param_counts: dict, size_info: dict, package_info: Optional[dict] = None): """Update model metadata information.""" self.meta_info["parameters"].update(param_counts) self.meta_info["model_size"].update(size_info) if package_info: self.meta_info["package_info"].update(package_info) def update_generation_info(self, memory_data: Optional[dict] = None, performance_metrics: Optional[dict] = None): """Update generation performance information, primarily for memory and high-level performance.""" if memory_data: self.generation_info["memory"].update(memory_data) if performance_metrics: # For things like overall tokens/sec if calculated self.generation_info.update(performance_metrics) def add_memory_log(self, stage: str, ram_mb: float, accelerator_allocated_mb: float, accelerator_reserved_mb: float): """Add a memory usage log entry to generation_info.""" self.generation_info["memory"]["memory_logs"].append( { "stage": stage, "ram_mb": ram_mb, "accelerator_allocated_mb": accelerator_allocated_mb, "accelerator_reserved_mb": accelerator_reserved_mb, } ) def add_metrics_for_category(self, category: str, metrics: dict, individual_samples: list = None): """Add metrics for a specific prompt category under generation_info.""" category_data = {"metrics": metrics, "samples": individual_samples if individual_samples is not None else []} self.generation_info["by_category"][category] = category_data def update_run_info( self, duration: float, status: BenchmarkStatus, error: Optional[str] = None, peft_config: Optional[dict] = None, benchmark_config: Optional[dict] = None, ): """Update run information.""" self.run_info["duration"] = duration self.run_info["status"] = status.value if error: self.run_info["error"] = error if peft_config: self.run_info["peft_config"] = peft_config if benchmark_config: self.run_info["benchmark_config"] = benchmark_config def compute_overall_metrics(self): """Compute overall metrics across all categories within generation_info.""" if not self.generation_info["by_category"]: return categories = self.generation_info["by_category"] key_metrics = [ "inference_time", "base_inference_time", "inference_overhead_pct", "time_per_token", "generated_tokens", ] for metric in key_metrics: values = [] for category_data in categories.values(): if "metrics" in category_data and metric in category_data["metrics"]: values.append(category_data["metrics"][metric]) if values: self.generation_info["overall"][metric] = sum(values) / len(values) def to_dict(self) -> dict[str, Any]: """Convert result to dictionary.""" self.compute_overall_metrics() return { "run_info": self.run_info, "generation_info": self.generation_info, "meta_info": self.meta_info, } def save(self, path: Optional[str] = None): """Save result to JSON file.""" if path is None: peft_branch = get_peft_branch() if self.status == BenchmarkStatus.CANCELLED: base_path = RESULT_PATH_CANCELLED elif peft_branch != "main": base_path = RESULT_PATH_TEMP elif self.status == BenchmarkStatus.SUCCESS: base_path = RESULT_PATH elif self.status == BenchmarkStatus.FAILED: base_path = RESULT_PATH_CANCELLED else: base_path = RESULT_PATH_TEMP filename = f"{self.experiment_name}.json" path = os.path.join(base_path, filename) os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "w") as f: json.dump(self.to_dict(), f, indent=2) return path @dataclass class BenchmarkConfig: """Configuration for benchmarking PEFT methods.""" model_id: str seed: int num_inference_runs: int max_new_tokens: int dtype: str = "float16" use_4bit: bool = False use_8bit: bool = False category_generation_params: Optional[dict] = None def __post_init__(self) -> None: """Validate configuration.""" if not isinstance(self.model_id, str): raise ValueError(f"Invalid model_id: {self.model_id}") if self.seed < 0: raise ValueError(f"Invalid seed: {self.seed}") if self.num_inference_runs <= 0: raise ValueError(f"Invalid num_inference_runs: {self.num_inference_runs}") if self.max_new_tokens <= 0: raise ValueError(f"Invalid max_new_tokens: {self.max_new_tokens}") @classmethod def from_dict(cls, config_dict: dict) -> "BenchmarkConfig": """Create config from dictionary.""" valid_keys = set(cls.__dataclass_fields__.keys()) filtered_dict = {k: v for k, v in config_dict.items() if k in valid_keys} return cls(**filtered_dict) @classmethod def from_json(cls, json_path: str) -> "BenchmarkConfig": """Load config from JSON file.""" with open(json_path) as f: config_dict = json.load(f) return cls.from_dict(config_dict) def to_dict(self) -> dict[str, Any]: """Convert config to dictionary.""" result = asdict(self) return result def save(self, path: str) -> None: """Save config to JSON file.""" with open(path, "w") as f: json.dump(self.to_dict(), f, indent=2) def merge_from_dict(self, config_dict: dict) -> None: """Merge settings from a dictionary into this config object. Keys in config_dict will override existing attributes. """ for key, value in config_dict.items(): if hasattr(self, key): setattr(self, key, value) def validate_experiment_path(path: str) -> tuple[str, "BenchmarkConfig"]: """Validate experiment path, load and merge configs, and return them.""" if not os.path.exists(path): raise FileNotFoundError(f"Experiment path not found: {path}") path_parts = os.path.normpath(path).split(os.sep) try: experiments_idx = path_parts.index("experiments") except ValueError: experiment_name = os.path.basename(path.rstrip(os.sep)) else: if experiments_idx + 1 < len(path_parts): method_name = path_parts[experiments_idx + 1] remaining_parts = path_parts[experiments_idx + 2 :] if remaining_parts: remaining_name = "-".join(remaining_parts) experiment_name = f"{method_name}--{remaining_name}" else: experiment_name = method_name else: experiment_name = os.path.basename(path.rstrip(os.sep)) default_config_path = os.path.join(os.path.dirname(__file__), FILE_NAME_DEFAULT_CONFIG) experiment_benchmark_params_path = os.path.join(path, FILE_NAME_BENCHMARK_PARAMS) if not os.path.exists(default_config_path): raise FileNotFoundError(f"Default configuration file not found: {default_config_path}. This is required.") benchmark_config = BenchmarkConfig.from_json(default_config_path) print(f"Loaded default configuration from {default_config_path}") if os.path.exists(experiment_benchmark_params_path): with open(experiment_benchmark_params_path) as f: experiment_specific_params = json.load(f) benchmark_config.merge_from_dict(experiment_specific_params) print(f"Loaded and merged experiment-specific parameters from {experiment_benchmark_params_path}") else: print(f"No {FILE_NAME_BENCHMARK_PARAMS} found in {path}. Using only default configuration.") return experiment_name, benchmark_config def get_memory_usage() -> tuple[float, float, float]: """Get current memory usage (RAM and accelerator).""" process = psutil.Process(os.getpid()) ram_usage_bytes = process.memory_info().rss ram_usage_mb = ram_usage_bytes / (1024 * 1024) if torch.cuda.is_available(): accelerator_allocated = torch.cuda.memory_allocated() accelerator_reserved = torch.cuda.memory_reserved() accelerator_allocated_mb = accelerator_allocated / (1024 * 1024) accelerator_reserved_mb = accelerator_reserved / (1024 * 1024) elif torch.xpu.is_available(): accelerator_allocated = torch.xpu.memory_allocated() accelerator_reserved = torch.xpu.memory_reserved() accelerator_allocated_mb = accelerator_allocated / (1024 * 1024) accelerator_reserved_mb = accelerator_reserved / (1024 * 1024) else: accelerator_allocated_mb = 0.0 accelerator_reserved_mb = 0.0 return ram_usage_mb, accelerator_allocated_mb, accelerator_reserved_mb def init_accelerator() -> tuple[float, float]: """Initialize accelerator and return initial memory usage.""" if torch.cuda.is_available(): torch.cuda.init() torch.cuda.empty_cache() _, accelerator_allocated, accelerator_reserved = get_memory_usage() elif torch.xpu.is_available(): torch.xpu.init() torch.xpu.empty_cache() _, accelerator_allocated, accelerator_reserved = get_memory_usage() else: accelerator_allocated = 0.0 accelerator_reserved = 0.0 return accelerator_allocated, accelerator_reserved def get_model_size_mb(model: torch.nn.Module, dtype_bytes: int = 4) -> float: """Calculate model size in MB.""" return sum(p.numel() * dtype_bytes for p in model.parameters()) / (1024 * 1024) def get_peft_branch() -> str: repo_root = os.path.dirname(__file__) return subprocess.check_output("git rev-parse --abbrev-ref HEAD".split(), cwd=repo_root).decode().strip() def log_results( experiment_name: str, benchmark_result: BenchmarkResult, print_fn: Callable = print, ) -> None: """Log benchmark results to console.""" print_fn("\n" + "=" * 50) print_fn(f"Benchmark Results: {experiment_name}") print_fn("=" * 50) print_fn(f"Status: {benchmark_result.run_info.get('status', 'N/A')}") print_fn(f"Duration: {benchmark_result.run_info.get('duration', 0):.2f} seconds") if benchmark_result.run_info.get("status") != BenchmarkStatus.SUCCESS.value: print_fn(f"Error: {benchmark_result.run_info.get('error', 'Unknown error')}") print_fn("=" * 50) return print_fn("\nModel Information:") print_fn(f" Base Model: {benchmark_result.meta_info.get('model_id', 'N/A')}") print_fn("\nParameter Counts:") params = benchmark_result.meta_info.get("parameters", {}) print_fn(f" Base Parameters: {params.get('base_params', 0):,}") print_fn(f" Trainable Parameters: {params.get('trainable_params', 0):,}") print_fn(f" Parameter Ratio: {params.get('param_ratio', 0):.5%}") print_fn("\nModel Size:") size_info = benchmark_result.meta_info.get("model_size", {}) print_fn(f" Base Model: {size_info.get('base_model_size_mb', 0):.2f} MB") print_fn(f" Adapter: {size_info.get('adapter_size_mb', 0):.2f} MB") print_fn("\nMemory Usage (from generation_info):") memory_data = benchmark_result.generation_info.get("memory", {}) print_fn(f" Peak Accelerator Memory: {memory_data.get('peak_accelerator_memory_mb', 0):.2f} MB") print_fn(f" Peak RAM Memory: {memory_data.get('peak_ram_memory_mb', 0):.2f} MB") print_fn("\nDetailed Metrics (from generation_info.by_category):") if benchmark_result.generation_info.get("by_category"): for category, cat_data in benchmark_result.generation_info["by_category"].items(): print_fn(f" Category: {category}") metrics = cat_data.get("metrics", {}) print_fn(f" Inference Time: {metrics.get('inference_time', 0):.4f} seconds") print_fn(f" Base Inference Time: {metrics.get('base_inference_time', 0):.4f} seconds") print_fn(f" Inference Overhead: {metrics.get('inference_overhead_pct', 0):.2f}%") print_fn(f" Time Per Token: {metrics.get('time_per_token', 0):.6f} seconds/token") print_fn(f" Generated Tokens: {metrics.get('generated_tokens', 0):.1f}") samples = cat_data.get("samples", []) if samples: print_fn(f" Number of Samples: {len(samples)}") print_fn( f" Average Generated Tokens: {sum(s.get('generated_tokens', 0) for s in samples) / len(samples):.1f}" ) else: print_fn(" No per-category metrics available.") benchmark_result.compute_overall_metrics() print_fn("\nOverall Metrics (from generation_info.overall):") overall = benchmark_result.generation_info.get("overall") if overall: print_fn(f" Inference Time: {overall.get('inference_time', 0):.4f} seconds") print_fn(f" Base Inference Time: {overall.get('base_inference_time', 0):.4f} seconds") print_fn(f" Inference Overhead: {overall.get('inference_overhead_pct', 0):.2f}%") print_fn(f" Time Per Token: {overall.get('time_per_token', 0):.6f} seconds/token") print_fn(f" Generated Tokens: {overall.get('generated_tokens', 0):.1f}") else: print_fn(" No overall metrics computed.") print_fn("\nSaved results to:", benchmark_result.save()) print_fn("=" * 50)