Spaces:
Runtime error
Runtime error
test
Browse files- avatar_generator.py +597 -0
avatar_generator.py
ADDED
|
@@ -0,0 +1,597 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from calendar import c
|
| 2 |
+
import os
|
| 3 |
+
# os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 4 |
+
# os.environ['TORCH_USE_CUDA_DSA'] = '1'
|
| 5 |
+
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
|
| 6 |
+
import yaml
|
| 7 |
+
import shutil
|
| 8 |
+
import collections
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.data
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
import numpy as np
|
| 13 |
+
import cv2 as cv
|
| 14 |
+
import glob
|
| 15 |
+
import datetime
|
| 16 |
+
import trimesh
|
| 17 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 18 |
+
from tqdm import tqdm
|
| 19 |
+
import importlib
|
| 20 |
+
# import config
|
| 21 |
+
from omegaconf import OmegaConf
|
| 22 |
+
import json
|
| 23 |
+
import math
|
| 24 |
+
import cv2
|
| 25 |
+
|
| 26 |
+
# AnimatableGaussians part
|
| 27 |
+
from AnimatableGaussians.network.lpips import LPIPS
|
| 28 |
+
from AnimatableGaussians.dataset.dataset_pose import PoseDataset
|
| 29 |
+
import AnimatableGaussians.utils.net_util as net_util
|
| 30 |
+
# import AnimatableGaussians.utils.visualize_util as visualize_util
|
| 31 |
+
from AnimatableGaussians.utils.camera_dir import get_camera_dir
|
| 32 |
+
from AnimatableGaussians.utils.renderer import Renderer
|
| 33 |
+
from AnimatableGaussians.utils.net_util import to_cuda
|
| 34 |
+
from AnimatableGaussians.utils.obj_io import save_mesh_as_ply
|
| 35 |
+
from AnimatableGaussians.gaussians.obj_io import save_gaussians_as_ply
|
| 36 |
+
import AnimatableGaussians.config as ag_config
|
| 37 |
+
|
| 38 |
+
# Gaussian-Head-Avatar part
|
| 39 |
+
from GHA.config.config import config_reenactment
|
| 40 |
+
from GHA.lib.dataset.Dataset import ReenactmentDataset
|
| 41 |
+
from GHA.lib.dataset.DataLoaderX import DataLoaderX
|
| 42 |
+
from GHA.lib.module.GaussianHeadModule import GaussianHeadModule
|
| 43 |
+
from GHA.lib.module.SuperResolutionModule import SuperResolutionModule
|
| 44 |
+
from GHA.lib.module.CameraModule import CameraModule
|
| 45 |
+
from GHA.lib.recorder.Recorder import ReenactmentRecorder
|
| 46 |
+
from GHA.lib.apps.Reenactment import Reenactment
|
| 47 |
+
from GHA.lib.utils.graphics_utils import getWorld2View2, getProjectionMatrix
|
| 48 |
+
|
| 49 |
+
# cat utils
|
| 50 |
+
from calc_offline_rendering_param import calc_offline_rendering_param
|
| 51 |
+
from calc_offline_rendering_param import load_camera_data
|
| 52 |
+
from render_utils.lib.networks.smpl_torch import SmplTorch
|
| 53 |
+
from render_utils.lib.utils.gaussian_np_utils import load_gaussians_from_ply
|
| 54 |
+
from render_utils.stitch_body_and_head import load_body_params, load_face_params, get_smpl_verts_and_head_transformation, calc_livehead2livebody
|
| 55 |
+
from render_utils.stitch_funcs import soften_blending_mask,paste_back_with_linear_interp
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
import ipdb
|
| 59 |
+
|
| 60 |
+
class Avatar:
|
| 61 |
+
def __init__(self, config):
|
| 62 |
+
self.config = config
|
| 63 |
+
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 64 |
+
|
| 65 |
+
# animateble gaussians part init
|
| 66 |
+
self.body = config.animatablegaussians
|
| 67 |
+
self.body.mode = 'test'
|
| 68 |
+
ag_config.set_opt(self.body)
|
| 69 |
+
avatar_module = self.body['model'].get('module', 'AnimatableGaussians.network.avatar')
|
| 70 |
+
print('Import AvatarNet from %s' % avatar_module)
|
| 71 |
+
AvatarNet = importlib.import_module(avatar_module).AvatarNet
|
| 72 |
+
self.avatar_net = AvatarNet(self.body.model).to(self.device)
|
| 73 |
+
self.random_bg_color = self.body['train'].get('random_bg_color', True)
|
| 74 |
+
self.bg_color = (1., 1., 1.)
|
| 75 |
+
self.bg_color_cuda = torch.from_numpy(np.asarray(self.bg_color)).to(torch.float32).to(self.device)
|
| 76 |
+
self.loss_weight = self.body['train']['loss_weight']
|
| 77 |
+
self.finetune_color = self.body['train']['finetune_color']
|
| 78 |
+
print('# Parameter number of AvatarNet is %d' % (sum([p.numel() for p in self.avatar_net.parameters()])))
|
| 79 |
+
|
| 80 |
+
# gaussian head avatar part init
|
| 81 |
+
self.head = config.gha
|
| 82 |
+
# cat utils part init
|
| 83 |
+
self.cat = config.cat
|
| 84 |
+
|
| 85 |
+
def build_dataset(self, body_pose_path=None, face_exp_path=None):
|
| 86 |
+
# build body_dataset
|
| 87 |
+
|
| 88 |
+
if body_pose_path is not None:
|
| 89 |
+
self.body['test']['pose_data']['data_path'] = body_pose_path
|
| 90 |
+
body_pose = np.load(body_pose_path, allow_pickle = True)
|
| 91 |
+
# print('body_pose keys:', body_pose.keys())
|
| 92 |
+
# print('body_pose shape:', body_pose['poses'].shape)
|
| 93 |
+
self.body['test']['pose_data']['frame_range'] = [0,body_pose['poses'].shape[0]]
|
| 94 |
+
|
| 95 |
+
dataset_module = self.body.get('dataset', 'MvRgbDatasetAvatarReX')
|
| 96 |
+
MvRgbDataset = importlib.import_module('AnimatableGaussians.dataset.dataset_mv_rgb').__getattribute__(dataset_module)
|
| 97 |
+
self.body_training_dataset = MvRgbDataset(**self.body['train']['data'], training = False)
|
| 98 |
+
if self.body['test'].get('n_pca', -1) >= 1:
|
| 99 |
+
self.body_training_dataset.compute_pca(n_components = self.body['test']['n_pca'])
|
| 100 |
+
if 'pose_data' in self.body.test:
|
| 101 |
+
testing_dataset = PoseDataset(**self.body['test']['pose_data'], smpl_shape = self.body_training_dataset.smpl_data['betas'][0])
|
| 102 |
+
dataset_name = testing_dataset.dataset_name
|
| 103 |
+
seq_name = testing_dataset.seq_name
|
| 104 |
+
else:
|
| 105 |
+
# throw an error
|
| 106 |
+
raise ValueError('No pose data in test config')
|
| 107 |
+
self.body_dataset = testing_dataset
|
| 108 |
+
iter_idx = self.load_ckpt(self.body['test']['prev_ckpt'], False)[1]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
self.head_config = config_reenactment()
|
| 112 |
+
self.head_config.load(self.head.config_path)
|
| 113 |
+
if face_exp_path is not None:
|
| 114 |
+
self.head_config.cfg.dataset.exp_path = face_exp_path
|
| 115 |
+
self.head_config.freeze()
|
| 116 |
+
self.head_config = self.head_config.get_cfg()
|
| 117 |
+
# build face dataset
|
| 118 |
+
self.head_dataset = ReenactmentDataset(self.head_config.dataset)
|
| 119 |
+
self.head_dataloader = DataLoaderX(self.head_dataset, batch_size=1, shuffle=False, pin_memory=True)
|
| 120 |
+
|
| 121 |
+
# device = torch.device('cuda:%d' % cfg.gpu_id)
|
| 122 |
+
|
| 123 |
+
gaussianhead_state_dict = torch.load(self.head_config.load_gaussianhead_checkpoint, map_location=lambda storage, loc: storage)
|
| 124 |
+
self.gaussianhead = GaussianHeadModule(self.head_config.gaussianheadmodule,
|
| 125 |
+
xyz=gaussianhead_state_dict['xyz'],
|
| 126 |
+
feature=gaussianhead_state_dict['feature'],
|
| 127 |
+
landmarks_3d_neutral=gaussianhead_state_dict['landmarks_3d_neutral']).to(self.device)
|
| 128 |
+
self.gaussianhead.load_state_dict(gaussianhead_state_dict)
|
| 129 |
+
|
| 130 |
+
self.supres = SuperResolutionModule(self.head_config.supresmodule).to(self.device)
|
| 131 |
+
self.supres.load_state_dict(torch.load(self.head_config.load_supres_checkpoint, map_location=lambda storage, loc: storage))
|
| 132 |
+
|
| 133 |
+
self.head_camera = CameraModule()
|
| 134 |
+
self.head_recorder = ReenactmentRecorder(self.head_config.recorder)
|
| 135 |
+
|
| 136 |
+
def render_all(self):
|
| 137 |
+
# len = short one
|
| 138 |
+
lenth = min(len(self.body_dataset), len(self.head_dataloader))
|
| 139 |
+
# build a tqdm bar
|
| 140 |
+
for idx in tqdm(range(lenth)):
|
| 141 |
+
self.reder_frame(idx)
|
| 142 |
+
|
| 143 |
+
# for idx in range(lenth):
|
| 144 |
+
# self.reder_frame(idx)
|
| 145 |
+
|
| 146 |
+
def reder_frame(self, idx):
|
| 147 |
+
# 渲染身体和各种mask
|
| 148 |
+
body_output = self.build_body(idx)
|
| 149 |
+
# 计算头的渲染参数
|
| 150 |
+
head_param = self.build_param(idx,body_output)
|
| 151 |
+
# 渲染头
|
| 152 |
+
head_output = self.build_head(idx, head_param)
|
| 153 |
+
# 把头和身体拼接起来
|
| 154 |
+
body_rendering= body_output['rgb_map_wo_hand'].astype(np.float32) / 255.0
|
| 155 |
+
# save body_rendering
|
| 156 |
+
# cv.imwrite('./output' + '/body_rgb_%08d.jpg' % idx, (body_output['rgb_map']).astype(np.uint8))
|
| 157 |
+
# cv.imwrite('./output' + '/body_rgb_wo_hand%08d.jpg' % idx, (body_output['rgb_map_wo_hand']).astype(np.uint8))
|
| 158 |
+
body_mask = body_output['mask_map'].astype(np.float32) / 255.0
|
| 159 |
+
body_torso_mask = body_output['torso_map'].astype(np.float32) / 255.0
|
| 160 |
+
head_rendering = head_output['render_images'].astype(np.float32) / 255.0
|
| 161 |
+
head_blending_mask = head_output['render_bw'].astype(np.float32) / 255.0
|
| 162 |
+
body_head_blending_params = np.load(self.cat.body_head_blending_param_path)
|
| 163 |
+
head_offline_rendering_param = head_param
|
| 164 |
+
stitch_output = self.stich_head_body(body_rendering, body_mask, body_torso_mask, head_rendering, head_blending_mask, body_head_blending_params, head_offline_rendering_param)
|
| 165 |
+
cv.imwrite('./output' + '/%08d.jpg' % idx, stitch_output)
|
| 166 |
+
|
| 167 |
+
# 渲染手和手的mask
|
| 168 |
+
|
| 169 |
+
# 把手拼上去
|
| 170 |
+
|
| 171 |
+
return stitch_output
|
| 172 |
+
|
| 173 |
+
pass
|
| 174 |
+
|
| 175 |
+
def load_ckpt(self, path, load_optm = True):
|
| 176 |
+
print('Loading networks from ', path + '/net.pt')
|
| 177 |
+
net_dict = torch.load(path + '/net.pt')
|
| 178 |
+
if 'avatar_net' in net_dict:
|
| 179 |
+
self.avatar_net.load_state_dict(net_dict['avatar_net'])
|
| 180 |
+
else:
|
| 181 |
+
print('[WARNING] Cannot find "avatar_net" from the network checkpoint!')
|
| 182 |
+
epoch_idx = net_dict['epoch_idx']
|
| 183 |
+
iter_idx = net_dict['iter_idx']
|
| 184 |
+
|
| 185 |
+
# if load_optm and os.path.exists(path + '/optm.pt'):
|
| 186 |
+
# print('Loading optimizers from ', path + '/optm.pt')
|
| 187 |
+
# optm_dict = torch.load(path + '/optm.pt')
|
| 188 |
+
# if 'avatar_net' in optm_dict:
|
| 189 |
+
# self.optm.load_state_dict(optm_dict['avatar_net'])
|
| 190 |
+
# else:
|
| 191 |
+
# print('[WARNING] Cannot find "avatar_net" from the optimizer checkpoint!')
|
| 192 |
+
|
| 193 |
+
return epoch_idx, iter_idx
|
| 194 |
+
|
| 195 |
+
@torch.no_grad()
|
| 196 |
+
def build_body(self,idx):
|
| 197 |
+
self.avatar_net.eval()
|
| 198 |
+
geo_renderer = None
|
| 199 |
+
item_0 = self.body_dataset.getitem(0, training = False)
|
| 200 |
+
object_center = item_0['live_bounds'].mean(0)
|
| 201 |
+
global_orient = item_0['global_orient'].cpu().numpy() if isinstance(item_0['global_orient'], torch.Tensor) else item_0['global_orient']
|
| 202 |
+
use_pca = self.body['test'].get('n_pca', -1) >= 1
|
| 203 |
+
# set x and z to 0
|
| 204 |
+
global_orient[0] = 0
|
| 205 |
+
global_orient[2] = 0
|
| 206 |
+
|
| 207 |
+
global_orient = cv.Rodrigues(global_orient)[0]
|
| 208 |
+
time_start = torch.cuda.Event(enable_timing = True)
|
| 209 |
+
time_start_all = torch.cuda.Event(enable_timing = True)
|
| 210 |
+
time_end = torch.cuda.Event(enable_timing = True)
|
| 211 |
+
|
| 212 |
+
if self.body['test'].get('fix_hand', False):
|
| 213 |
+
self.avatar_net.generate_mean_hands()
|
| 214 |
+
|
| 215 |
+
img_scale = self.body['test'].get('img_scale', 1.0)
|
| 216 |
+
view_setting = self.body['test'].get('view_setting', 'free')
|
| 217 |
+
extr, intr, img_h, img_w = get_camera_dir(idx, object_center, global_orient, img_scale, view_setting)
|
| 218 |
+
w2c = extr
|
| 219 |
+
c2w = np.linalg.inv(w2c)
|
| 220 |
+
pos = c2w[:3, 3]
|
| 221 |
+
rot = c2w[:3, :3]
|
| 222 |
+
serializable_array_2d = [x.tolist() for x in rot]
|
| 223 |
+
camera_entry = {
|
| 224 |
+
'width': int(img_w),
|
| 225 |
+
'height': int(img_h),
|
| 226 |
+
'position': pos.tolist(),
|
| 227 |
+
'rotation': serializable_array_2d,
|
| 228 |
+
'fy': float(intr[1, 1]),
|
| 229 |
+
'fx': float(intr[0, 0]),
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
getitem_func = self.body_dataset.getitem_fast if hasattr(self.body_dataset, 'getitem_fast') else self.body_dataset.getitem
|
| 233 |
+
item = getitem_func(
|
| 234 |
+
idx,
|
| 235 |
+
training = False,
|
| 236 |
+
extr = extr,
|
| 237 |
+
intr = intr,
|
| 238 |
+
img_w = img_w,
|
| 239 |
+
img_h = img_h
|
| 240 |
+
)
|
| 241 |
+
items = to_cuda(item, add_batch = False)
|
| 242 |
+
|
| 243 |
+
if 'smpl_pos_map' not in items:
|
| 244 |
+
self.avatar_net.get_pose_map(items)
|
| 245 |
+
|
| 246 |
+
# pca
|
| 247 |
+
if use_pca:
|
| 248 |
+
mask = self.body_training_dataset.pos_map_mask
|
| 249 |
+
live_pos_map = items['smpl_pos_map'].permute(1, 2, 0).cpu().numpy()
|
| 250 |
+
front_live_pos_map, back_live_pos_map = np.split(live_pos_map, [3], 2)
|
| 251 |
+
pose_conds = front_live_pos_map[mask]
|
| 252 |
+
new_pose_conds = self.body_training_dataset.transform_pca(pose_conds, sigma_pca = float(self.body['test'].get('sigma_pca', 2.)))
|
| 253 |
+
front_live_pos_map[mask] = new_pose_conds
|
| 254 |
+
live_pos_map = np.concatenate([front_live_pos_map, back_live_pos_map], 2)
|
| 255 |
+
items.update({
|
| 256 |
+
'smpl_pos_map_pca': torch.from_numpy(live_pos_map).to(self.device).permute(2, 0, 1)
|
| 257 |
+
})
|
| 258 |
+
|
| 259 |
+
# print items
|
| 260 |
+
# print(items.keys())
|
| 261 |
+
# print(items.values())
|
| 262 |
+
# exit()
|
| 263 |
+
|
| 264 |
+
# get render result
|
| 265 |
+
output = self.avatar_net.render(items, bg_color = self.bg_color, use_pca = use_pca)
|
| 266 |
+
output_wo_hand = self.avatar_net.render_wo_hand(items, bg_color = self.bg_color, use_pca = use_pca)
|
| 267 |
+
mask_output = self.avatar_net.render_mask(items, bg_color = self.bg_color, use_pca = use_pca)
|
| 268 |
+
|
| 269 |
+
# do some postprocess
|
| 270 |
+
rgb_map_wo_hand = output_wo_hand['rgb_map']
|
| 271 |
+
|
| 272 |
+
full_body_mask = mask_output['full_body_rgb_map']
|
| 273 |
+
full_body_mask.clip_(0., 1.)
|
| 274 |
+
full_body_mask = (full_body_mask * 255).to(torch.uint8)
|
| 275 |
+
|
| 276 |
+
hand_only_mask = mask_output['hand_only_rgb_map']
|
| 277 |
+
hand_only_mask.clip_(0., 1.)
|
| 278 |
+
hand_only_mask = (hand_only_mask * 255).to(torch.uint8)
|
| 279 |
+
|
| 280 |
+
# build the covered hand mask and the hand visualbility flag
|
| 281 |
+
body_red_mask = (mask_output['full_body_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['full_body_rgb_map'].device))
|
| 282 |
+
body_red_mask = (body_red_mask*body_red_mask).sum(dim=2) < 0.01 # need save
|
| 283 |
+
|
| 284 |
+
hand_red_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([1., 0., 0.], device = mask_output['hand_only_rgb_map'].device))
|
| 285 |
+
hand_red_mask = (hand_red_mask*hand_red_mask).sum(dim=2) < 0.0
|
| 286 |
+
if_mask_r_hand = abs(body_red_mask.sum() - hand_red_mask.sum()) / hand_red_mask.sum() > 0.95
|
| 287 |
+
if_mask_r_hand = if_mask_r_hand.cpu().numpy()
|
| 288 |
+
|
| 289 |
+
body_blue_mask = (mask_output['full_body_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['full_body_rgb_map'].device))
|
| 290 |
+
body_blue_mask = (body_blue_mask*body_blue_mask).sum(dim=2) < 0.01 # need save
|
| 291 |
+
|
| 292 |
+
hand_blue_mask = (mask_output['hand_only_rgb_map'] - torch.tensor([0., 0., 1.], device = mask_output['hand_only_rgb_map'].device))
|
| 293 |
+
hand_blue_mask = (hand_blue_mask*hand_blue_mask).sum(dim=2) < 0.01
|
| 294 |
+
|
| 295 |
+
if_mask_l_hand = abs(body_blue_mask.sum() - hand_blue_mask.sum()) / hand_blue_mask.sum() > 0.95
|
| 296 |
+
if_mask_l_hand = if_mask_l_hand.cpu().numpy()
|
| 297 |
+
|
| 298 |
+
# 保存左右手被遮挡部分的mask
|
| 299 |
+
red_mask = hand_red_mask ^ (hand_red_mask & body_red_mask)
|
| 300 |
+
blue_mask = hand_blue_mask ^ (hand_blue_mask & body_blue_mask)
|
| 301 |
+
all_mask = red_mask | blue_mask
|
| 302 |
+
|
| 303 |
+
all_mask = (all_mask * 255).to(torch.uint8)
|
| 304 |
+
r_hand_mask = (body_red_mask * 255).to(torch.uint8)
|
| 305 |
+
l_hand_mask = (body_blue_mask * 255).to(torch.uint8)
|
| 306 |
+
hand_visual = [if_mask_r_hand, if_mask_l_hand]
|
| 307 |
+
|
| 308 |
+
# build sleeve mask
|
| 309 |
+
mask = (r_hand_mask>128) | (l_hand_mask>128)| (all_mask>128)
|
| 310 |
+
mask = mask.cpu().numpy().astype(np.uint8)
|
| 311 |
+
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
|
| 312 |
+
kernel = np.ones((5, 5), np.uint8)
|
| 313 |
+
# 应用膨胀操作
|
| 314 |
+
mask = cv.dilate(mask, kernel, iterations=3)
|
| 315 |
+
mask = torch.tensor(mask).to(self.device)
|
| 316 |
+
|
| 317 |
+
left_hand_mask = mask_output['left_hand_rgb_map']
|
| 318 |
+
left_hand_mask.clip_(0., 1.)
|
| 319 |
+
# non white part is mask
|
| 320 |
+
left_hand_mask = (torch.tensor([1., 1., 1.], device = left_hand_mask.device) - left_hand_mask)
|
| 321 |
+
left_hand_mask = (left_hand_mask*left_hand_mask).sum(dim=2) > 0.01
|
| 322 |
+
# dele two hand mask
|
| 323 |
+
left_hand_mask = left_hand_mask & ~mask
|
| 324 |
+
|
| 325 |
+
right_hand_mask = mask_output['right_hand_rgb_map']
|
| 326 |
+
right_hand_mask.clip_(0., 1.)
|
| 327 |
+
right_hand_mask = (torch.tensor([1., 1., 1.], device = right_hand_mask.device) - right_hand_mask)
|
| 328 |
+
right_hand_mask = (right_hand_mask*right_hand_mask).sum(dim=2) > 0.01
|
| 329 |
+
right_hand_mask = right_hand_mask & ~mask
|
| 330 |
+
|
| 331 |
+
left_sleeve_mask = (left_hand_mask * 255).to(torch.uint8)
|
| 332 |
+
right_sleeve_mask = (right_hand_mask * 255).to(torch.uint8)
|
| 333 |
+
|
| 334 |
+
# 利用 r_hand_mask 和 l_hand_mask,将wo_hand图像中的mask部分覆盖rgb_map
|
| 335 |
+
rgb_map = output['rgb_map']
|
| 336 |
+
rgb_map.clip_(0., 1.)
|
| 337 |
+
rgb_map = (rgb_map * 255).to(torch.uint8).cpu().numpy()
|
| 338 |
+
|
| 339 |
+
rgb_map_wo_hand = output_wo_hand['rgb_map']
|
| 340 |
+
rgb_map_wo_hand.clip_(0., 1.)
|
| 341 |
+
rgb_map_wo_hand = (rgb_map_wo_hand * 255).to(torch.uint8).cpu().numpy()
|
| 342 |
+
|
| 343 |
+
r_mask = (r_hand_mask>128).cpu().numpy()
|
| 344 |
+
l_mask = (l_hand_mask>128).cpu().numpy()
|
| 345 |
+
mask = r_mask | l_mask
|
| 346 |
+
mask = mask.astype(np.uint8)
|
| 347 |
+
# 定义一个结构元素,可以调整其大小以改变膨胀的程度
|
| 348 |
+
kernel = np.ones((5, 5), np.uint8)
|
| 349 |
+
# 应用膨胀操作
|
| 350 |
+
mask = cv.dilate(mask, kernel, iterations=3)
|
| 351 |
+
mask = mask.astype(np.bool_)
|
| 352 |
+
mask = np.expand_dims(mask, axis=2)
|
| 353 |
+
# get the final rgb_map without hand
|
| 354 |
+
mix = rgb_map_wo_hand.copy() * mask + rgb_map * ~mask
|
| 355 |
+
|
| 356 |
+
torso_map = output['torso_map'][:, :, 0]
|
| 357 |
+
torso_map.clip_(0., 1.)
|
| 358 |
+
torso_map = (torso_map * 255).to(torch.uint8).cpu().numpy()
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
mask_map = output['mask_map'][:, :, 0]
|
| 362 |
+
mask_map.clip_(0., 1.)
|
| 363 |
+
mask_map = (mask_map * 255).to(torch.uint8).cpu().numpy()
|
| 364 |
+
|
| 365 |
+
output={
|
| 366 |
+
# smpl
|
| 367 |
+
'betas':self.body_training_dataset.smpl_data['betas'].reshape([-1]).detach().cpu().numpy(),
|
| 368 |
+
'global_orient':item['global_orient'].reshape([-1]).detach().cpu().numpy(),
|
| 369 |
+
'transl':item['transl'].reshape([-1]).detach().cpu().numpy(),
|
| 370 |
+
'body_pose':item['body_pose'].reshape([-1]).detach().cpu().numpy(),
|
| 371 |
+
|
| 372 |
+
# camera
|
| 373 |
+
'extr':extr,
|
| 374 |
+
'intr':intr,
|
| 375 |
+
'img_h':img_h,
|
| 376 |
+
'img_w':img_w,
|
| 377 |
+
'camera_entry':camera_entry,
|
| 378 |
+
|
| 379 |
+
# rgb and masks
|
| 380 |
+
'rgb_map':rgb_map,
|
| 381 |
+
'rgb_map_wo_hand':mix,
|
| 382 |
+
'torso_map':torso_map,
|
| 383 |
+
'mask_map':mask_map,
|
| 384 |
+
'all_mask':all_mask,
|
| 385 |
+
'left_sleeve_mask':left_sleeve_mask,
|
| 386 |
+
'right_sleeve_mask':right_sleeve_mask,
|
| 387 |
+
'hand_visual':hand_visual
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
return output
|
| 391 |
+
|
| 392 |
+
def build_param(self,idx,body_output):
|
| 393 |
+
head_gaussians = load_gaussians_from_ply(self.cat.ref_head_gaussian_path)
|
| 394 |
+
head_pose, head_scale, id_coeff, exp_coeff = load_face_params(self.cat.ref_head_param_path)
|
| 395 |
+
body_head_blending_params = np.load(self.cat.body_head_blending_param_path)
|
| 396 |
+
smplx_to_faceverse = body_head_blending_params['smplx_to_faceverse']
|
| 397 |
+
residual_transf = body_head_blending_params['residual_transf']
|
| 398 |
+
head_color_bw = body_head_blending_params['head_color_bw']
|
| 399 |
+
|
| 400 |
+
smpl = SmplTorch(model_file='./AnimatableGaussians/smpl_files/smplx/SMPLX_NEUTRAL.npz')
|
| 401 |
+
global_orient, transl, body_pose, betas = body_output['global_orient'], body_output['transl'], body_output['body_pose'], body_output['betas']
|
| 402 |
+
smpl_verts, head_joint_transfmat = get_smpl_verts_and_head_transformation(
|
| 403 |
+
smpl, global_orient, body_pose, transl, betas)
|
| 404 |
+
livehead2livebody = calc_livehead2livebody(head_pose, smplx_to_faceverse, head_joint_transfmat)
|
| 405 |
+
total_transf = np.matmul(livehead2livebody, residual_transf)
|
| 406 |
+
|
| 407 |
+
cam, image_size = load_camera_data(body_output['camera_entry'])
|
| 408 |
+
cam_extr = np.matmul(cam[0], total_transf)
|
| 409 |
+
cam_intr = np.copy(cam[1])
|
| 410 |
+
|
| 411 |
+
pts = np.copy(head_gaussians.xyz)
|
| 412 |
+
pts_proj = np.matmul(pts, cam_extr[:3, :3].transpose()) + cam_extr[:3, 3]
|
| 413 |
+
pts_proj = np.matmul(pts_proj, cam_intr.transpose())
|
| 414 |
+
pts_proj = pts_proj / pts_proj[:, 2:]
|
| 415 |
+
|
| 416 |
+
pts_min, pts_max = np.min(pts_proj, axis=0), np.max(pts_proj, axis=0)
|
| 417 |
+
pts_center = (pts_min + pts_max) // 2
|
| 418 |
+
pts_size = np.max(pts_max - pts_min)
|
| 419 |
+
tgt_pts_size = 350
|
| 420 |
+
tgt_image_size = 512
|
| 421 |
+
zoom_scale = tgt_pts_size / pts_size
|
| 422 |
+
cam_intr_zoom = np.copy(cam_intr)
|
| 423 |
+
cam_intr_zoom[:2] *= zoom_scale
|
| 424 |
+
cam_intr_zoom[0, 2] = cam_intr_zoom[0, 2] - (pts_center[0]*zoom_scale - tgt_image_size/2)
|
| 425 |
+
cam_intr_zoom[1, 2] = cam_intr_zoom[1, 2] - (pts_center[1]*zoom_scale - tgt_image_size/2)
|
| 426 |
+
|
| 427 |
+
output = {
|
| 428 |
+
'cam_extr':cam_extr,
|
| 429 |
+
'cam_intr':cam_intr,
|
| 430 |
+
'image_size':image_size,
|
| 431 |
+
'cam_intr_zoom':cam_intr_zoom,
|
| 432 |
+
'zoom_image_size':[tgt_image_size, tgt_image_size],
|
| 433 |
+
'zoom_center':pts_center,
|
| 434 |
+
'zoom_scale':zoom_scale,
|
| 435 |
+
'head_pose':head_pose,
|
| 436 |
+
'head_scale':head_scale,
|
| 437 |
+
'head_color_bw':head_color_bw,
|
| 438 |
+
}
|
| 439 |
+
|
| 440 |
+
return output
|
| 441 |
+
|
| 442 |
+
def build_head(self, idx, head_offline_rendering_param):
|
| 443 |
+
# head_offline_rendering_param = np.load(offline_rendering_param_fpath)
|
| 444 |
+
cam_extr = head_offline_rendering_param['cam_extr']
|
| 445 |
+
cam_intr = head_offline_rendering_param['cam_intr']
|
| 446 |
+
cam_intr_zoom = head_offline_rendering_param['cam_intr_zoom']
|
| 447 |
+
zoom_image_size = head_offline_rendering_param['zoom_image_size']
|
| 448 |
+
head_pose = head_offline_rendering_param['head_pose']
|
| 449 |
+
head_scale = head_offline_rendering_param['head_scale']
|
| 450 |
+
head_color_bw = head_offline_rendering_param['head_color_bw']
|
| 451 |
+
zoom_scale = head_offline_rendering_param['zoom_scale']
|
| 452 |
+
head_pose = torch.from_numpy(head_pose.astype(np.float32)).to(self.device)
|
| 453 |
+
head_color_bw = torch.from_numpy(head_color_bw.astype(np.float32)).to(self.device)
|
| 454 |
+
render_size = 512
|
| 455 |
+
|
| 456 |
+
# data = self.head_dataloader[idx]
|
| 457 |
+
data = self.head_dataset[idx]
|
| 458 |
+
# add batch dim
|
| 459 |
+
data = {k: v.unsqueeze(0) for k, v in data.items() if isinstance(v, torch.Tensor)}
|
| 460 |
+
# print(data.keys())
|
| 461 |
+
|
| 462 |
+
new_gs_camera_param_dict = self.prepare_camera_data_for_gs_rendering(cam_extr, cam_intr_zoom, render_size, render_size)
|
| 463 |
+
for k in new_gs_camera_param_dict.keys():
|
| 464 |
+
if isinstance(new_gs_camera_param_dict[k], torch.Tensor):
|
| 465 |
+
new_gs_camera_param_dict[k] = new_gs_camera_param_dict[k].unsqueeze(0).to(self.device)
|
| 466 |
+
new_gs_camera_param_dict['pose'] = head_pose.unsqueeze(0).to(self.device)
|
| 467 |
+
|
| 468 |
+
to_cuda = ['images', 'intrinsics', 'extrinsics', 'world_view_transform', 'projection_matrix', 'full_proj_transform', 'camera_center',
|
| 469 |
+
'pose', 'scale', 'exp_coeff', 'pose_code']
|
| 470 |
+
for data_item in to_cuda:
|
| 471 |
+
data[data_item] = data[data_item].to(device=self.device)
|
| 472 |
+
|
| 473 |
+
data.update(new_gs_camera_param_dict)
|
| 474 |
+
|
| 475 |
+
with torch.no_grad():
|
| 476 |
+
data = self.gaussianhead.generate(data)
|
| 477 |
+
data = self.head_camera.render_gaussian(data, 512)
|
| 478 |
+
render_images = data['render_images']
|
| 479 |
+
supres_images = self.supres(render_images)
|
| 480 |
+
data['supres_images'] = supres_images
|
| 481 |
+
data['bg_color'] = torch.zeros([1, 32], device=self.device, dtype=torch.float32)
|
| 482 |
+
data['color_bk'] = data.pop('color')
|
| 483 |
+
data['color'] = torch.ones_like(data['color_bk']) * head_color_bw.reshape([1, -1, 1]) * 2.0
|
| 484 |
+
data['color'][:, :, 1] = 1
|
| 485 |
+
data['color'] = torch.clamp(data['color'], 0., 1.)
|
| 486 |
+
data = self.head_camera.render_gaussian(data, render_size)
|
| 487 |
+
render_bw = data['render_images'][:, :3, :, :]
|
| 488 |
+
data['color'] = data.pop('color_bk')
|
| 489 |
+
data['render_bw'] = render_bw
|
| 490 |
+
|
| 491 |
+
supres_image = data['supres_images'][0].permute(1, 2, 0).detach().cpu().numpy()
|
| 492 |
+
supres_image = (supres_image * 255).astype(np.uint8)[:,:,::-1]
|
| 493 |
+
|
| 494 |
+
render_bw = data['render_bw'][0].permute(1, 2, 0).detach().cpu().numpy()
|
| 495 |
+
render_bw = np.clip(render_bw * 255, 0, 255).astype(np.uint8)[:,:,::-1]
|
| 496 |
+
render_bw = cv2.resize(render_bw, (supres_image.shape[0], supres_image.shape[1]))
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
output = {
|
| 500 |
+
'render_images':supres_image,
|
| 501 |
+
'render_bw':render_bw,
|
| 502 |
+
}
|
| 503 |
+
|
| 504 |
+
return output
|
| 505 |
+
|
| 506 |
+
def prepare_camera_data_for_gs_rendering(self, extrinsic, intrinsic, original_resolution, new_resolution):
|
| 507 |
+
extrinsic = np.copy(extrinsic)
|
| 508 |
+
intrinsic = np.copy(intrinsic)
|
| 509 |
+
new_intrinsic = np.copy(intrinsic)
|
| 510 |
+
new_intrinsic[:2] *= new_resolution / original_resolution
|
| 511 |
+
|
| 512 |
+
intrinsic[0, 0] = intrinsic[0, 0] * 2 / original_resolution
|
| 513 |
+
intrinsic[0, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
|
| 514 |
+
intrinsic[1, 1] = intrinsic[1, 1] * 2 / original_resolution
|
| 515 |
+
intrinsic[1, 2] = intrinsic[1, 2] * 2 / original_resolution - 1
|
| 516 |
+
fovx = 2 * math.atan(1 / intrinsic[0, 0])
|
| 517 |
+
fovy = 2 * math.atan(1 / intrinsic[1, 1])
|
| 518 |
+
|
| 519 |
+
world_view_transform = torch.tensor(getWorld2View2(extrinsic[:3, :3].transpose(), extrinsic[:3, 3])).transpose(0, 1)
|
| 520 |
+
projection_matrix = getProjectionMatrix(
|
| 521 |
+
znear=0.01, zfar=100, fovX=None, fovY=None,
|
| 522 |
+
K=new_intrinsic, img_h=new_resolution, img_w=new_resolution).transpose(0,1)
|
| 523 |
+
full_proj_transform = (world_view_transform.unsqueeze(0).bmm(projection_matrix.unsqueeze(0))).squeeze(0)
|
| 524 |
+
camera_center = world_view_transform.inverse()[3, :3]
|
| 525 |
+
|
| 526 |
+
c2w = np.linalg.inv(extrinsic)
|
| 527 |
+
viewdir = np.matmul(c2w[:3, :3], np.array([0, 0, -1], np.float32).reshape([3, 1])).reshape([-1])
|
| 528 |
+
viewdir = torch.from_numpy(viewdir.astype(np.float32))
|
| 529 |
+
|
| 530 |
+
return {
|
| 531 |
+
'extrinsics': torch.from_numpy(extrinsic.astype(np.float32)),
|
| 532 |
+
'intrinsics': torch.from_numpy(intrinsic.astype(np.float32)),
|
| 533 |
+
'viewdir': viewdir,
|
| 534 |
+
'fovx': torch.Tensor([fovx]),
|
| 535 |
+
'fovy': torch.Tensor([fovy]),
|
| 536 |
+
'world_view_transform': world_view_transform,
|
| 537 |
+
'projection_matrix': projection_matrix,
|
| 538 |
+
'full_proj_transform': full_proj_transform,
|
| 539 |
+
'camera_center': camera_center
|
| 540 |
+
}
|
| 541 |
+
|
| 542 |
+
def stich_head_body(self,body_rendering,body_mask,body_torso_mask,head_rendering,head_blending_mask,body_head_blending_params,head_offline_rendering_param):
|
| 543 |
+
color_transfer = body_head_blending_params['color_transfer']
|
| 544 |
+
zoom_image_size = head_offline_rendering_param['zoom_image_size']
|
| 545 |
+
zoom_center = head_offline_rendering_param['zoom_center']
|
| 546 |
+
zoom_scale = head_offline_rendering_param['zoom_scale']
|
| 547 |
+
|
| 548 |
+
|
| 549 |
+
if len(body_mask.shape) == 3:
|
| 550 |
+
body_mask = body_mask[:, :, 0]
|
| 551 |
+
if len(body_torso_mask.shape) == 3:
|
| 552 |
+
body_torso_mask = body_torso_mask[:, :, 0]
|
| 553 |
+
|
| 554 |
+
head_rendering = cv2.resize(head_rendering, (int(zoom_image_size[0]), int(zoom_image_size[1])))
|
| 555 |
+
head_blending_mask = cv2.resize(head_blending_mask, (int(zoom_image_size[0]), int(zoom_image_size[1])))
|
| 556 |
+
head_mask = head_blending_mask[:, :, 1]
|
| 557 |
+
head_blending_mask = head_blending_mask[:, :, 0]
|
| 558 |
+
head_blending_mask = soften_blending_mask(head_blending_mask, head_mask)
|
| 559 |
+
|
| 560 |
+
pasteback_center = zoom_center
|
| 561 |
+
pasteback_scale = zoom_scale
|
| 562 |
+
|
| 563 |
+
head_rendering_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_rendering, [body_rendering.shape[1], body_rendering.shape[0]])
|
| 564 |
+
head_blending_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_blending_mask, [body_rendering.shape[1], body_rendering.shape[0]])
|
| 565 |
+
head_mask_back = paste_back_with_linear_interp(pasteback_scale, pasteback_center, head_mask, [body_rendering.shape[1], body_rendering.shape[0]])
|
| 566 |
+
# head_blending_mask_back *= body_mask
|
| 567 |
+
# head_mask_back *= body_mask
|
| 568 |
+
head_blending_mask_back = head_blending_mask_back * (1 - body_torso_mask)
|
| 569 |
+
|
| 570 |
+
head_rendering_back_shape = head_rendering_back.shape
|
| 571 |
+
head_rendering_back = np.matmul(head_rendering_back.reshape(-1, 3), color_transfer[:3, :3].transpose()) + color_transfer[:3, 3][None]
|
| 572 |
+
head_rendering_back = head_rendering_back.reshape(head_rendering_back_shape)
|
| 573 |
+
head_rendering_back = head_rendering_back * head_mask_back[:, :, None] + (1 - head_mask_back[:, :, None])
|
| 574 |
+
|
| 575 |
+
body_rendering = body_rendering * (1 - head_blending_mask_back[:, :, None]) + head_rendering_back * head_blending_mask_back[:, :, None]
|
| 576 |
+
|
| 577 |
+
return np.uint8(np.clip(body_rendering, 0, 1)*255)
|
| 578 |
+
|
| 579 |
+
# def build_hand(betas,poses,camera):
|
| 580 |
+
|
| 581 |
+
# # build hand here
|
| 582 |
+
|
| 583 |
+
# output = {
|
| 584 |
+
# 'hand_render':render,
|
| 585 |
+
# 'hand_mask':mask,
|
| 586 |
+
|
| 587 |
+
# }
|
| 588 |
+
|
| 589 |
+
# return output
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
if __name__ == '__main__':
|
| 593 |
+
conf = OmegaConf.load('configs/example.yaml')
|
| 594 |
+
avatar = Avatar(conf)
|
| 595 |
+
avatar.build_dataset()
|
| 596 |
+
# avatar.test_body()
|
| 597 |
+
avatar.render_all()
|