Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +153 -0
- pim_module.py +566 -0
- requirements.txt +8 -0
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
from typing import List
|
| 3 |
+
from fastapi import FastAPI, UploadFile, File
|
| 4 |
+
from fastapi.responses import JSONResponse
|
| 5 |
+
import uvicorn
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torchvision.transforms as transforms
|
| 9 |
+
import timm
|
| 10 |
+
from pim_module import PluginMoodel
|
| 11 |
+
import cv2
|
| 12 |
+
import copy
|
| 13 |
+
import numpy as np
|
| 14 |
+
import numpy.matlib
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
app = FastAPI()
|
| 18 |
+
|
| 19 |
+
# === Classes
|
| 20 |
+
classes_list = [
|
| 21 |
+
"Ferrage_et_accessoires_ANTI_FAUSSE_MANOEUVRE",
|
| 22 |
+
"Ferrage_et_accessoires_Busettes",
|
| 23 |
+
"Ferrage_et_accessoires_Butees",
|
| 24 |
+
"Ferrage_et_accessoires_Chariots",
|
| 25 |
+
"Ferrage_et_accessoires_Charniere",
|
| 26 |
+
"Ferrage_et_accessoires_Compas_limiteur",
|
| 27 |
+
"Ferrage_et_accessoires_Renvois_d'angle",
|
| 28 |
+
"Joints_et_consommables_Equerres_aluminium_moulees",
|
| 29 |
+
"Joints_et_consommables_Joints_a_clipser",
|
| 30 |
+
"Joints_et_consommables_Joints_a_coller",
|
| 31 |
+
"Joints_et_consommables_Joints_a_glisser",
|
| 32 |
+
"Joints_et_consommables_Joints_EPDM",
|
| 33 |
+
"Joints_et_consommables_Joints_PVC_aluminium",
|
| 34 |
+
"Joints_et_consommables_Silicone_pour_vitrage_alu",
|
| 35 |
+
"Joints_et_consommables_Visserie_inox_alu",
|
| 36 |
+
"Poignee_carre_7_mm",
|
| 37 |
+
"Poignee_carre_8_mm",
|
| 38 |
+
"Poignee_cremone",
|
| 39 |
+
"Poignee_cuvette",
|
| 40 |
+
"Poignee_de_tirage",
|
| 41 |
+
"Poignee_pour_Levant_Coulissant",
|
| 42 |
+
"Serrure_Cremone_multipoints",
|
| 43 |
+
"Serrure_Cuvette",
|
| 44 |
+
"Serrure_Gaches",
|
| 45 |
+
"Serrure_Pene_Crochet",
|
| 46 |
+
"Serrure_pour_Porte",
|
| 47 |
+
"Serrure_Tringles",
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
data_size = 384
|
| 51 |
+
fpn_size = 1536
|
| 52 |
+
num_classes = 27
|
| 53 |
+
num_selects = {'layer1': 256, 'layer2': 128, 'layer3': 64, 'layer4': 32}
|
| 54 |
+
|
| 55 |
+
module_id_mapper, features, grads = {}, {}, {}
|
| 56 |
+
|
| 57 |
+
def forward_hook(module, inp_hs, out_hs):
|
| 58 |
+
layer_id = len(features) + 1
|
| 59 |
+
module_id_mapper[module] = layer_id
|
| 60 |
+
features[layer_id] = {"in": inp_hs, "out": out_hs}
|
| 61 |
+
|
| 62 |
+
def backward_hook(module, inp_grad, out_grad):
|
| 63 |
+
layer_id = module_id_mapper[module]
|
| 64 |
+
grads[layer_id] = {"in": inp_grad, "out": out_grad}
|
| 65 |
+
|
| 66 |
+
def build_model(path: str):
|
| 67 |
+
backbone = timm.create_model('swin_large_patch4_window12_384_in22k', pretrained=True)
|
| 68 |
+
model = PluginMoodel(
|
| 69 |
+
backbone=backbone,
|
| 70 |
+
return_nodes=None,
|
| 71 |
+
img_size=data_size,
|
| 72 |
+
use_fpn=True,
|
| 73 |
+
fpn_size=fpn_size,
|
| 74 |
+
proj_type="Linear",
|
| 75 |
+
upsample_type="Conv",
|
| 76 |
+
use_selection=True,
|
| 77 |
+
num_classes=num_classes,
|
| 78 |
+
num_selects=num_selects,
|
| 79 |
+
use_combiner=True,
|
| 80 |
+
comb_proj_size=None
|
| 81 |
+
)
|
| 82 |
+
ckpt = torch.load(path, map_location="cpu")
|
| 83 |
+
model.load_state_dict(ckpt["model"], strict=False)
|
| 84 |
+
model.eval()
|
| 85 |
+
|
| 86 |
+
for layer in [0, 1, 2, 3]:
|
| 87 |
+
model.backbone.layers[layer].register_forward_hook(forward_hook)
|
| 88 |
+
model.backbone.layers[layer].register_full_backward_hook(backward_hook)
|
| 89 |
+
|
| 90 |
+
for i in range(1, 5):
|
| 91 |
+
getattr(model.fpn_down, f'Proj_layer{i}').register_forward_hook(forward_hook)
|
| 92 |
+
getattr(model.fpn_down, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
|
| 93 |
+
getattr(model.fpn_up, f'Proj_layer{i}').register_forward_hook(forward_hook)
|
| 94 |
+
getattr(model.fpn_up, f'Proj_layer{i}').register_full_backward_hook(backward_hook)
|
| 95 |
+
|
| 96 |
+
return model
|
| 97 |
+
|
| 98 |
+
class ImgLoader:
|
| 99 |
+
def __init__(self, img_size):
|
| 100 |
+
self.transform = transforms.Compose([
|
| 101 |
+
transforms.Resize((510, 510), Image.BILINEAR),
|
| 102 |
+
transforms.CenterCrop((img_size, img_size)),
|
| 103 |
+
transforms.ToTensor(),
|
| 104 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 105 |
+
])
|
| 106 |
+
|
| 107 |
+
def load(self, path):
|
| 108 |
+
ori_img = cv2.imread(path)
|
| 109 |
+
img = copy.deepcopy(ori_img[:, :, ::-1])
|
| 110 |
+
img = Image.fromarray(img)
|
| 111 |
+
return self.transform(img).unsqueeze(0)
|
| 112 |
+
|
| 113 |
+
def cal_backward(out):
|
| 114 |
+
target_layer_names = ['layer1', 'layer2', 'layer3', 'layer4',
|
| 115 |
+
'FPN1_layer1', 'FPN1_layer2', 'FPN1_layer3', 'FPN1_layer4', 'comb_outs']
|
| 116 |
+
sum_out = None
|
| 117 |
+
for name in target_layer_names:
|
| 118 |
+
tmp_out = out[name].mean(1) if name != "comb_outs" else out[name]
|
| 119 |
+
tmp_out = torch.softmax(tmp_out, dim=-1)
|
| 120 |
+
sum_out = tmp_out if sum_out is None else sum_out + tmp_out
|
| 121 |
+
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
smax = torch.softmax(sum_out, dim=-1)
|
| 124 |
+
A = np.transpose(np.matlib.repmat(smax[0], num_classes, 1)) - np.eye(num_classes)
|
| 125 |
+
_, _, V = np.linalg.svd(A, full_matrices=True)
|
| 126 |
+
V = V[num_classes - 1, :]
|
| 127 |
+
if V[0] < 0:
|
| 128 |
+
V = -V
|
| 129 |
+
V = np.log(V)
|
| 130 |
+
V = V - min(V)
|
| 131 |
+
V = V / sum(V)
|
| 132 |
+
|
| 133 |
+
top5 = np.argsort(-V)[:5]
|
| 134 |
+
accs = -np.sort(-V)[:5]
|
| 135 |
+
return [f"{classes_list[int(cls)]}: {acc*100:.2f}%" for cls, acc in zip(top5, accs)]
|
| 136 |
+
|
| 137 |
+
# === Charge le modèle au démarrage
|
| 138 |
+
model = build_model("weights.pt")
|
| 139 |
+
img_loader = ImgLoader(data_size)
|
| 140 |
+
|
| 141 |
+
@app.post("/predict")
|
| 142 |
+
async def predict(file: UploadFile = File(...)):
|
| 143 |
+
global features, grads, module_id_mapper
|
| 144 |
+
features, grads, module_id_mapper = {}, {}, {}
|
| 145 |
+
|
| 146 |
+
file_path = f"/tmp/{file.filename}"
|
| 147 |
+
with open(file_path, "wb") as buffer:
|
| 148 |
+
buffer.write(await file.read())
|
| 149 |
+
|
| 150 |
+
img_tensor = img_loader.load(file_path)
|
| 151 |
+
out = model(img_tensor)
|
| 152 |
+
result = cal_backward(out)
|
| 153 |
+
return JSONResponse(content=result)
|
pim_module.py
ADDED
|
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torchvision.models as models
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torchvision.models.feature_extraction import get_graph_node_names
|
| 6 |
+
from torchvision.models.feature_extraction import create_feature_extractor
|
| 7 |
+
from typing import Union
|
| 8 |
+
import copy
|
| 9 |
+
|
| 10 |
+
class GCNCombiner(nn.Module):
|
| 11 |
+
|
| 12 |
+
def __init__(self,
|
| 13 |
+
total_num_selects: int,
|
| 14 |
+
num_classes: int,
|
| 15 |
+
inputs: Union[dict, None] = None,
|
| 16 |
+
proj_size: Union[int, None] = None,
|
| 17 |
+
fpn_size: Union[int, None] = None):
|
| 18 |
+
"""
|
| 19 |
+
If building backbone without FPN, set fpn_size to None and MUST give
|
| 20 |
+
'inputs' and 'proj_size', the reason of these setting is to constrain the
|
| 21 |
+
dimension of graph convolutional network input.
|
| 22 |
+
"""
|
| 23 |
+
super(GCNCombiner, self).__init__()
|
| 24 |
+
|
| 25 |
+
assert inputs is not None or fpn_size is not None, \
|
| 26 |
+
"To build GCN combiner, you must give one features dimension."
|
| 27 |
+
|
| 28 |
+
### auto-proj
|
| 29 |
+
self.fpn_size = fpn_size
|
| 30 |
+
if fpn_size is None:
|
| 31 |
+
for name in inputs:
|
| 32 |
+
if len(name) == 4:
|
| 33 |
+
in_size = inputs[name].size(1)
|
| 34 |
+
elif len(name) == 3:
|
| 35 |
+
in_size = inputs[name].size(2)
|
| 36 |
+
else:
|
| 37 |
+
raise ValusError("The size of output dimension of previous must be 3 or 4.")
|
| 38 |
+
m = nn.Sequential(
|
| 39 |
+
nn.Linear(in_size, proj_size),
|
| 40 |
+
nn.ReLU(),
|
| 41 |
+
nn.Linear(proj_size, proj_size)
|
| 42 |
+
)
|
| 43 |
+
self.add_module("proj_"+name, m)
|
| 44 |
+
self.proj_size = proj_size
|
| 45 |
+
else:
|
| 46 |
+
self.proj_size = fpn_size
|
| 47 |
+
|
| 48 |
+
### build one layer structure (with adaptive module)
|
| 49 |
+
num_joints = total_num_selects // 64
|
| 50 |
+
|
| 51 |
+
self.param_pool0 = nn.Linear(total_num_selects, num_joints)
|
| 52 |
+
|
| 53 |
+
A = torch.eye(num_joints) / 100 + 1 / 100
|
| 54 |
+
self.adj1 = nn.Parameter(copy.deepcopy(A))
|
| 55 |
+
self.conv1 = nn.Conv1d(self.proj_size, self.proj_size, 1)
|
| 56 |
+
self.batch_norm1 = nn.BatchNorm1d(self.proj_size)
|
| 57 |
+
|
| 58 |
+
self.conv_q1 = nn.Conv1d(self.proj_size, self.proj_size//4, 1)
|
| 59 |
+
self.conv_k1 = nn.Conv1d(self.proj_size, self.proj_size//4, 1)
|
| 60 |
+
self.alpha1 = nn.Parameter(torch.zeros(1))
|
| 61 |
+
|
| 62 |
+
### merge information
|
| 63 |
+
self.param_pool1 = nn.Linear(num_joints, 1)
|
| 64 |
+
|
| 65 |
+
#### class predict
|
| 66 |
+
self.dropout = nn.Dropout(p=0.1)
|
| 67 |
+
self.classifier = nn.Linear(self.proj_size, num_classes)
|
| 68 |
+
|
| 69 |
+
self.tanh = nn.Tanh()
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
"""
|
| 73 |
+
"""
|
| 74 |
+
hs = []
|
| 75 |
+
names = []
|
| 76 |
+
for name in x:
|
| 77 |
+
if "FPN1_" in name:
|
| 78 |
+
continue
|
| 79 |
+
if self.fpn_size is None:
|
| 80 |
+
_tmp = getattr(self, "proj_"+name)(x[name])
|
| 81 |
+
else:
|
| 82 |
+
_tmp = x[name]
|
| 83 |
+
hs.append(_tmp)
|
| 84 |
+
names.append([name, _tmp.size()])
|
| 85 |
+
|
| 86 |
+
hs = torch.cat(hs, dim=1).transpose(1, 2).contiguous() # B, S', C --> B, C, S
|
| 87 |
+
# print(hs.size(), names)
|
| 88 |
+
hs = self.param_pool0(hs)
|
| 89 |
+
### adaptive adjacency
|
| 90 |
+
q1 = self.conv_q1(hs).mean(1)
|
| 91 |
+
k1 = self.conv_k1(hs).mean(1)
|
| 92 |
+
A1 = self.tanh(q1.unsqueeze(-1) - k1.unsqueeze(1))
|
| 93 |
+
A1 = self.adj1 + A1 * self.alpha1
|
| 94 |
+
### graph convolution
|
| 95 |
+
hs = self.conv1(hs)
|
| 96 |
+
hs = torch.matmul(hs, A1)
|
| 97 |
+
hs = self.batch_norm1(hs)
|
| 98 |
+
### predict
|
| 99 |
+
hs = self.param_pool1(hs)
|
| 100 |
+
hs = self.dropout(hs)
|
| 101 |
+
hs = hs.flatten(1)
|
| 102 |
+
hs = self.classifier(hs)
|
| 103 |
+
|
| 104 |
+
return hs
|
| 105 |
+
|
| 106 |
+
class WeaklySelector(nn.Module):
|
| 107 |
+
|
| 108 |
+
def __init__(self, inputs: dict, num_classes: int, num_select: dict, fpn_size: Union[int, None] = None):
|
| 109 |
+
"""
|
| 110 |
+
inputs: dictionary contain torch.Tensors, which comes from backbone
|
| 111 |
+
[Tensor1(hidden feature1), Tensor2(hidden feature2)...]
|
| 112 |
+
Please note that if len(features.size) equal to 3, the order of dimension must be [B,S,C],
|
| 113 |
+
S mean the spatial domain, and if len(features.size) equal to 4, the order must be [B,C,H,W]
|
| 114 |
+
"""
|
| 115 |
+
super(WeaklySelector, self).__init__()
|
| 116 |
+
|
| 117 |
+
self.num_select = num_select
|
| 118 |
+
|
| 119 |
+
self.fpn_size = fpn_size
|
| 120 |
+
### build classifier
|
| 121 |
+
if self.fpn_size is None:
|
| 122 |
+
self.num_classes = num_classes
|
| 123 |
+
for name in inputs:
|
| 124 |
+
fs_size = inputs[name].size()
|
| 125 |
+
if len(fs_size) == 3:
|
| 126 |
+
in_size = fs_size[2]
|
| 127 |
+
elif len(fs_size) == 4:
|
| 128 |
+
in_size = fs_size[1]
|
| 129 |
+
m = nn.Linear(in_size, num_classes)
|
| 130 |
+
self.add_module("classifier_l_"+name, m)
|
| 131 |
+
|
| 132 |
+
self.thresholds = {}
|
| 133 |
+
for name in inputs:
|
| 134 |
+
self.thresholds[name] = []
|
| 135 |
+
|
| 136 |
+
# def select(self, logits, l_name):
|
| 137 |
+
# """
|
| 138 |
+
# logits: [B, S, num_classes]
|
| 139 |
+
# """
|
| 140 |
+
# probs = torch.softmax(logits, dim=-1)
|
| 141 |
+
# scores, _ = torch.max(probs, dim=-1)
|
| 142 |
+
# _, ids = torch.sort(scores, -1, descending=True)
|
| 143 |
+
# sn = self.num_select[l_name]
|
| 144 |
+
# s_ids = ids[:, :sn]
|
| 145 |
+
# not_s_ids = ids[:, sn:]
|
| 146 |
+
# return s_ids.unsqueeze(-1), not_s_ids.unsqueeze(-1)
|
| 147 |
+
|
| 148 |
+
def forward(self, x, logits=None):
|
| 149 |
+
"""
|
| 150 |
+
x :
|
| 151 |
+
dictionary contain the features maps which
|
| 152 |
+
come from your choosen layers.
|
| 153 |
+
size must be [B, HxW, C] ([B, S, C]) or [B, C, H, W].
|
| 154 |
+
[B,C,H,W] will be transpose to [B, HxW, C] automatically.
|
| 155 |
+
"""
|
| 156 |
+
if self.fpn_size is None:
|
| 157 |
+
logits = {}
|
| 158 |
+
selections = {}
|
| 159 |
+
for name in x:
|
| 160 |
+
# print("[selector]", name, x[name].size())
|
| 161 |
+
if "FPN1_" in name:
|
| 162 |
+
continue
|
| 163 |
+
if len(x[name].size()) == 4:
|
| 164 |
+
B, C, H, W = x[name].size()
|
| 165 |
+
x[name] = x[name].view(B, C, H*W).permute(0, 2, 1).contiguous()
|
| 166 |
+
C = x[name].size(-1)
|
| 167 |
+
if self.fpn_size is None:
|
| 168 |
+
logits[name] = getattr(self, "classifier_l_"+name)(x[name])
|
| 169 |
+
|
| 170 |
+
probs = torch.softmax(logits[name], dim=-1)
|
| 171 |
+
sum_probs = torch.softmax(logits[name].mean(1), dim=-1)
|
| 172 |
+
selections[name] = []
|
| 173 |
+
preds_1 = []
|
| 174 |
+
preds_0 = []
|
| 175 |
+
num_select = self.num_select[name]
|
| 176 |
+
for bi in range(logits[name].size(0)):
|
| 177 |
+
_, max_ids = torch.max(sum_probs[bi], dim=-1)
|
| 178 |
+
confs, ranks = torch.sort(probs[bi, :, max_ids], descending=True)
|
| 179 |
+
sf = x[name][bi][ranks[:num_select]]
|
| 180 |
+
nf = x[name][bi][ranks[num_select:]] # calculate
|
| 181 |
+
selections[name].append(sf) # [num_selected, C]
|
| 182 |
+
preds_1.append(logits[name][bi][ranks[:num_select]])
|
| 183 |
+
preds_0.append(logits[name][bi][ranks[num_select:]])
|
| 184 |
+
|
| 185 |
+
if bi >= len(self.thresholds[name]):
|
| 186 |
+
self.thresholds[name].append(confs[num_select]) # for initialize
|
| 187 |
+
else:
|
| 188 |
+
self.thresholds[name][bi] = confs[num_select]
|
| 189 |
+
|
| 190 |
+
selections[name] = torch.stack(selections[name])
|
| 191 |
+
preds_1 = torch.stack(preds_1)
|
| 192 |
+
preds_0 = torch.stack(preds_0)
|
| 193 |
+
|
| 194 |
+
logits["select_"+name] = preds_1
|
| 195 |
+
logits["drop_"+name] = preds_0
|
| 196 |
+
|
| 197 |
+
return selections
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class FPN(nn.Module):
|
| 201 |
+
|
| 202 |
+
def __init__(self, inputs: dict, fpn_size: int, proj_type: str, upsample_type: str):
|
| 203 |
+
"""
|
| 204 |
+
inputs : dictionary contains torch.Tensor
|
| 205 |
+
which comes from backbone output
|
| 206 |
+
fpn_size: integer, fpn
|
| 207 |
+
proj_type:
|
| 208 |
+
in ["Conv", "Linear"]
|
| 209 |
+
upsample_type:
|
| 210 |
+
in ["Bilinear", "Conv", "Fc"]
|
| 211 |
+
for convolution neural network (e.g. ResNet, EfficientNet), recommand 'Bilinear'.
|
| 212 |
+
for Vit, "Fc". and Swin-T, "Conv"
|
| 213 |
+
"""
|
| 214 |
+
super(FPN, self).__init__()
|
| 215 |
+
assert proj_type in ["Conv", "Linear"], \
|
| 216 |
+
"FPN projection type {} were not support yet, please choose type 'Conv' or 'Linear'".format(proj_type)
|
| 217 |
+
assert upsample_type in ["Bilinear", "Conv"], \
|
| 218 |
+
"FPN upsample type {} were not support yet, please choose type 'Bilinear' or 'Conv'".format(proj_type)
|
| 219 |
+
|
| 220 |
+
self.fpn_size = fpn_size
|
| 221 |
+
self.upsample_type = upsample_type
|
| 222 |
+
inp_names = [name for name in inputs]
|
| 223 |
+
|
| 224 |
+
for i, node_name in enumerate(inputs):
|
| 225 |
+
### projection module
|
| 226 |
+
if proj_type == "Conv":
|
| 227 |
+
m = nn.Sequential(
|
| 228 |
+
nn.Conv2d(inputs[node_name].size(1), inputs[node_name].size(1), 1),
|
| 229 |
+
nn.ReLU(),
|
| 230 |
+
nn.Conv2d(inputs[node_name].size(1), fpn_size, 1)
|
| 231 |
+
)
|
| 232 |
+
elif proj_type == "Linear":
|
| 233 |
+
m = nn.Sequential(
|
| 234 |
+
nn.Linear(inputs[node_name].size(-1), inputs[node_name].size(-1)),
|
| 235 |
+
nn.ReLU(),
|
| 236 |
+
nn.Linear(inputs[node_name].size(-1), fpn_size),
|
| 237 |
+
)
|
| 238 |
+
self.add_module("Proj_"+node_name, m)
|
| 239 |
+
|
| 240 |
+
### upsample module
|
| 241 |
+
if upsample_type == "Conv" and i != 0:
|
| 242 |
+
assert len(inputs[node_name].size()) == 3 # B, S, C
|
| 243 |
+
in_dim = inputs[node_name].size(1)
|
| 244 |
+
out_dim = inputs[inp_names[i-1]].size(1)
|
| 245 |
+
# if in_dim != out_dim:
|
| 246 |
+
m = nn.Conv1d(in_dim, out_dim, 1) # for spatial domain
|
| 247 |
+
# else:
|
| 248 |
+
# m = nn.Identity()
|
| 249 |
+
self.add_module("Up_"+node_name, m)
|
| 250 |
+
|
| 251 |
+
if upsample_type == "Bilinear":
|
| 252 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear')
|
| 253 |
+
|
| 254 |
+
def upsample_add(self, x0: torch.Tensor, x1: torch.Tensor, x1_name: str):
|
| 255 |
+
"""
|
| 256 |
+
return Upsample(x1) + x1
|
| 257 |
+
"""
|
| 258 |
+
if self.upsample_type == "Bilinear":
|
| 259 |
+
if x1.size(-1) != x0.size(-1):
|
| 260 |
+
x1 = self.upsample(x1)
|
| 261 |
+
else:
|
| 262 |
+
x1 = getattr(self, "Up_"+x1_name)(x1)
|
| 263 |
+
return x1 + x0
|
| 264 |
+
|
| 265 |
+
def forward(self, x):
|
| 266 |
+
"""
|
| 267 |
+
x : dictionary
|
| 268 |
+
{
|
| 269 |
+
"node_name1": feature1,
|
| 270 |
+
"node_name2": feature2, ...
|
| 271 |
+
}
|
| 272 |
+
"""
|
| 273 |
+
### project to same dimension
|
| 274 |
+
hs = []
|
| 275 |
+
for i, name in enumerate(x):
|
| 276 |
+
if "FPN1_" in name:
|
| 277 |
+
continue
|
| 278 |
+
x[name] = getattr(self, "Proj_"+name)(x[name])
|
| 279 |
+
hs.append(name)
|
| 280 |
+
|
| 281 |
+
x["FPN1_" + "layer4"] = x["layer4"]
|
| 282 |
+
|
| 283 |
+
for i in range(len(hs)-1, 0, -1):
|
| 284 |
+
x1_name = hs[i]
|
| 285 |
+
x0_name = hs[i-1]
|
| 286 |
+
x[x0_name] = self.upsample_add(x[x0_name],
|
| 287 |
+
x[x1_name],
|
| 288 |
+
x1_name)
|
| 289 |
+
x["FPN1_" + x0_name] = x[x0_name]
|
| 290 |
+
|
| 291 |
+
return x
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
class FPN_UP(nn.Module):
|
| 295 |
+
|
| 296 |
+
def __init__(self,
|
| 297 |
+
inputs: dict,
|
| 298 |
+
fpn_size: int):
|
| 299 |
+
super(FPN_UP, self).__init__()
|
| 300 |
+
|
| 301 |
+
inp_names = [name for name in inputs]
|
| 302 |
+
|
| 303 |
+
for i, node_name in enumerate(inputs):
|
| 304 |
+
### projection module
|
| 305 |
+
m = nn.Sequential(
|
| 306 |
+
nn.Linear(fpn_size, fpn_size),
|
| 307 |
+
nn.ReLU(),
|
| 308 |
+
nn.Linear(fpn_size, fpn_size),
|
| 309 |
+
)
|
| 310 |
+
self.add_module("Proj_"+node_name, m)
|
| 311 |
+
|
| 312 |
+
### upsample module
|
| 313 |
+
if i != (len(inputs) - 1):
|
| 314 |
+
assert len(inputs[node_name].size()) == 3 # B, S, C
|
| 315 |
+
in_dim = inputs[node_name].size(1)
|
| 316 |
+
out_dim = inputs[inp_names[i+1]].size(1)
|
| 317 |
+
m = nn.Conv1d(in_dim, out_dim, 1) # for spatial domain
|
| 318 |
+
self.add_module("Down_"+node_name, m)
|
| 319 |
+
# print("Down_"+node_name, in_dim, out_dim)
|
| 320 |
+
"""
|
| 321 |
+
Down_layer1 2304 576
|
| 322 |
+
Down_layer2 576 144
|
| 323 |
+
Down_layer3 144 144
|
| 324 |
+
"""
|
| 325 |
+
|
| 326 |
+
def downsample_add(self, x0: torch.Tensor, x1: torch.Tensor, x0_name: str):
|
| 327 |
+
"""
|
| 328 |
+
return Upsample(x1) + x1
|
| 329 |
+
"""
|
| 330 |
+
# print("[downsample_add] Down_" + x0_name)
|
| 331 |
+
x0 = getattr(self, "Down_" + x0_name)(x0)
|
| 332 |
+
return x1 + x0
|
| 333 |
+
|
| 334 |
+
def forward(self, x):
|
| 335 |
+
"""
|
| 336 |
+
x : dictionary
|
| 337 |
+
{
|
| 338 |
+
"node_name1": feature1,
|
| 339 |
+
"node_name2": feature2, ...
|
| 340 |
+
}
|
| 341 |
+
"""
|
| 342 |
+
### project to same dimension
|
| 343 |
+
hs = []
|
| 344 |
+
for i, name in enumerate(x):
|
| 345 |
+
if "FPN1_" in name:
|
| 346 |
+
continue
|
| 347 |
+
x[name] = getattr(self, "Proj_"+name)(x[name])
|
| 348 |
+
hs.append(name)
|
| 349 |
+
|
| 350 |
+
# print(hs)
|
| 351 |
+
for i in range(0, len(hs) - 1):
|
| 352 |
+
x0_name = hs[i]
|
| 353 |
+
x1_name = hs[i+1]
|
| 354 |
+
# print(x0_name, x1_name)
|
| 355 |
+
# print(x[x0_name].size(), x[x1_name].size())
|
| 356 |
+
x[x1_name] = self.downsample_add(x[x0_name],
|
| 357 |
+
x[x1_name],
|
| 358 |
+
x0_name)
|
| 359 |
+
return x
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class PluginMoodel(nn.Module):
|
| 365 |
+
|
| 366 |
+
def __init__(self,
|
| 367 |
+
backbone: torch.nn.Module,
|
| 368 |
+
return_nodes: Union[dict, None],
|
| 369 |
+
img_size: int,
|
| 370 |
+
use_fpn: bool,
|
| 371 |
+
fpn_size: Union[int, None],
|
| 372 |
+
proj_type: str,
|
| 373 |
+
upsample_type: str,
|
| 374 |
+
use_selection: bool,
|
| 375 |
+
num_classes: int,
|
| 376 |
+
num_selects: dict,
|
| 377 |
+
use_combiner: bool,
|
| 378 |
+
comb_proj_size: Union[int, None]
|
| 379 |
+
):
|
| 380 |
+
"""
|
| 381 |
+
* backbone:
|
| 382 |
+
torch.nn.Module class (recommand pretrained on ImageNet or IG-3.5B-17k(provided by FAIR))
|
| 383 |
+
* return_nodes:
|
| 384 |
+
e.g.
|
| 385 |
+
return_nodes = {
|
| 386 |
+
# node_name: user-specified key for output dict
|
| 387 |
+
'layer1.2.relu_2': 'layer1',
|
| 388 |
+
'layer2.3.relu_2': 'layer2',
|
| 389 |
+
'layer3.5.relu_2': 'layer3',
|
| 390 |
+
'layer4.2.relu_2': 'layer4',
|
| 391 |
+
} # you can see the example on https://pytorch.org/vision/main/feature_extraction.html
|
| 392 |
+
!!! if using 'Swin-Transformer', please set return_nodes to None
|
| 393 |
+
!!! and please set use_fpn to True
|
| 394 |
+
* feat_sizes:
|
| 395 |
+
tuple or list contain features map size of each layers.
|
| 396 |
+
((C, H, W)). e.g. ((1024, 14, 14), (2048, 7, 7))
|
| 397 |
+
* use_fpn:
|
| 398 |
+
boolean, use features pyramid network or not
|
| 399 |
+
* fpn_size:
|
| 400 |
+
integer, features pyramid network projection dimension
|
| 401 |
+
* num_selects:
|
| 402 |
+
num_selects = {
|
| 403 |
+
# match user-specified in return_nodes
|
| 404 |
+
"layer1": 2048,
|
| 405 |
+
"layer2": 512,
|
| 406 |
+
"layer3": 128,
|
| 407 |
+
"layer4": 32,
|
| 408 |
+
}
|
| 409 |
+
Note: after selector module (WeaklySelector) , the feature map's size is [B, S', C] which
|
| 410 |
+
contained by 'logits' or 'selections' dictionary (S' is selection number, different layer
|
| 411 |
+
could be different).
|
| 412 |
+
"""
|
| 413 |
+
super(PluginMoodel, self).__init__()
|
| 414 |
+
|
| 415 |
+
### = = = = = Backbone = = = = =
|
| 416 |
+
self.return_nodes = return_nodes
|
| 417 |
+
if return_nodes is not None:
|
| 418 |
+
self.backbone = create_feature_extractor(backbone, return_nodes=return_nodes)
|
| 419 |
+
else:
|
| 420 |
+
self.backbone = backbone
|
| 421 |
+
|
| 422 |
+
### get hidden feartues size
|
| 423 |
+
rand_in = torch.randn(1, 3, img_size, img_size)
|
| 424 |
+
outs = self.backbone(rand_in)
|
| 425 |
+
|
| 426 |
+
### just original backbone
|
| 427 |
+
if not use_fpn and (not use_selection and not use_combiner):
|
| 428 |
+
for name in outs:
|
| 429 |
+
fs_size = outs[name].size()
|
| 430 |
+
if len(fs_size) == 3:
|
| 431 |
+
out_size = fs_size.size(-1)
|
| 432 |
+
elif len(fs_size) == 4:
|
| 433 |
+
out_size = fs_size.size(1)
|
| 434 |
+
else:
|
| 435 |
+
raise ValusError("The size of output dimension of previous must be 3 or 4.")
|
| 436 |
+
self.classifier = nn.Linear(out_size, num_classes)
|
| 437 |
+
|
| 438 |
+
### = = = = = FPN = = = = =
|
| 439 |
+
self.use_fpn = use_fpn
|
| 440 |
+
if self.use_fpn:
|
| 441 |
+
self.fpn_down = FPN(outs, fpn_size, proj_type, upsample_type)
|
| 442 |
+
self.build_fpn_classifier_down(outs, fpn_size, num_classes)
|
| 443 |
+
self.fpn_up = FPN_UP(outs, fpn_size)
|
| 444 |
+
self.build_fpn_classifier_up(outs, fpn_size, num_classes)
|
| 445 |
+
|
| 446 |
+
self.fpn_size = fpn_size
|
| 447 |
+
|
| 448 |
+
### = = = = = Selector = = = = =
|
| 449 |
+
self.use_selection = use_selection
|
| 450 |
+
if self.use_selection:
|
| 451 |
+
w_fpn_size = self.fpn_size if self.use_fpn else None # if not using fpn, build classifier in weakly selector
|
| 452 |
+
self.selector = WeaklySelector(outs, num_classes, num_selects, w_fpn_size)
|
| 453 |
+
|
| 454 |
+
### = = = = = Combiner = = = = =
|
| 455 |
+
self.use_combiner = use_combiner
|
| 456 |
+
if self.use_combiner:
|
| 457 |
+
assert self.use_selection, "Please use selection module before combiner"
|
| 458 |
+
if self.use_fpn:
|
| 459 |
+
gcn_inputs, gcn_proj_size = None, None
|
| 460 |
+
else:
|
| 461 |
+
gcn_inputs, gcn_proj_size = outs, comb_proj_size # redundant, fix in future
|
| 462 |
+
total_num_selects = sum([num_selects[name] for name in num_selects]) # sum
|
| 463 |
+
self.combiner = GCNCombiner(total_num_selects, num_classes, gcn_inputs, gcn_proj_size, self.fpn_size)
|
| 464 |
+
|
| 465 |
+
def build_fpn_classifier_up(self, inputs: dict, fpn_size: int, num_classes: int):
|
| 466 |
+
"""
|
| 467 |
+
Teh results of our experiments show that linear classifier in this case may cause some problem.
|
| 468 |
+
"""
|
| 469 |
+
for name in inputs:
|
| 470 |
+
m = nn.Sequential(
|
| 471 |
+
nn.Conv1d(fpn_size, fpn_size, 1),
|
| 472 |
+
nn.BatchNorm1d(fpn_size),
|
| 473 |
+
nn.ReLU(),
|
| 474 |
+
nn.Conv1d(fpn_size, num_classes, 1)
|
| 475 |
+
)
|
| 476 |
+
self.add_module("fpn_classifier_up_"+name, m)
|
| 477 |
+
|
| 478 |
+
def build_fpn_classifier_down(self, inputs: dict, fpn_size: int, num_classes: int):
|
| 479 |
+
"""
|
| 480 |
+
Teh results of our experiments show that linear classifier in this case may cause some problem.
|
| 481 |
+
"""
|
| 482 |
+
for name in inputs:
|
| 483 |
+
m = nn.Sequential(
|
| 484 |
+
nn.Conv1d(fpn_size, fpn_size, 1),
|
| 485 |
+
nn.BatchNorm1d(fpn_size),
|
| 486 |
+
nn.ReLU(),
|
| 487 |
+
nn.Conv1d(fpn_size, num_classes, 1)
|
| 488 |
+
)
|
| 489 |
+
self.add_module("fpn_classifier_down_" + name, m)
|
| 490 |
+
|
| 491 |
+
def forward_backbone(self, x):
|
| 492 |
+
return self.backbone(x)
|
| 493 |
+
|
| 494 |
+
def fpn_predict_down(self, x: dict, logits: dict):
|
| 495 |
+
"""
|
| 496 |
+
x: [B, C, H, W] or [B, S, C]
|
| 497 |
+
[B, C, H, W] --> [B, H*W, C]
|
| 498 |
+
"""
|
| 499 |
+
for name in x:
|
| 500 |
+
if "FPN1_" not in name:
|
| 501 |
+
continue
|
| 502 |
+
### predict on each features point
|
| 503 |
+
if len(x[name].size()) == 4:
|
| 504 |
+
B, C, H, W = x[name].size()
|
| 505 |
+
logit = x[name].view(B, C, H*W)
|
| 506 |
+
elif len(x[name].size()) == 3:
|
| 507 |
+
logit = x[name].transpose(1, 2).contiguous()
|
| 508 |
+
model_name = name.replace("FPN1_", "")
|
| 509 |
+
logits[name] = getattr(self, "fpn_classifier_down_" + model_name)(logit)
|
| 510 |
+
logits[name] = logits[name].transpose(1, 2).contiguous() # transpose
|
| 511 |
+
|
| 512 |
+
def fpn_predict_up(self, x: dict, logits: dict):
|
| 513 |
+
"""
|
| 514 |
+
x: [B, C, H, W] or [B, S, C]
|
| 515 |
+
[B, C, H, W] --> [B, H*W, C]
|
| 516 |
+
"""
|
| 517 |
+
for name in x:
|
| 518 |
+
if "FPN1_" in name:
|
| 519 |
+
continue
|
| 520 |
+
### predict on each features point
|
| 521 |
+
if len(x[name].size()) == 4:
|
| 522 |
+
B, C, H, W = x[name].size()
|
| 523 |
+
logit = x[name].view(B, C, H*W)
|
| 524 |
+
elif len(x[name].size()) == 3:
|
| 525 |
+
logit = x[name].transpose(1, 2).contiguous()
|
| 526 |
+
model_name = name.replace("FPN1_", "")
|
| 527 |
+
logits[name] = getattr(self, "fpn_classifier_up_" + model_name)(logit)
|
| 528 |
+
logits[name] = logits[name].transpose(1, 2).contiguous() # transpose
|
| 529 |
+
|
| 530 |
+
def forward(self, x: torch.Tensor):
|
| 531 |
+
|
| 532 |
+
logits = {}
|
| 533 |
+
|
| 534 |
+
x = self.forward_backbone(x)
|
| 535 |
+
|
| 536 |
+
if self.use_fpn:
|
| 537 |
+
x = self.fpn_down(x)
|
| 538 |
+
# print([name for name in x])
|
| 539 |
+
self.fpn_predict_down(x, logits)
|
| 540 |
+
x = self.fpn_up(x)
|
| 541 |
+
self.fpn_predict_up(x, logits)
|
| 542 |
+
|
| 543 |
+
if self.use_selection:
|
| 544 |
+
selects = self.selector(x, logits)
|
| 545 |
+
|
| 546 |
+
if self.use_combiner:
|
| 547 |
+
comb_outs = self.combiner(selects)
|
| 548 |
+
logits['comb_outs'] = comb_outs
|
| 549 |
+
return logits
|
| 550 |
+
|
| 551 |
+
if self.use_selection or self.fpn:
|
| 552 |
+
return logits
|
| 553 |
+
|
| 554 |
+
### original backbone (only predict final selected layer)
|
| 555 |
+
for name in x:
|
| 556 |
+
hs = x[name]
|
| 557 |
+
|
| 558 |
+
if len(hs.size()) == 4:
|
| 559 |
+
hs = F.adaptive_avg_pool2d(hs, (1, 1))
|
| 560 |
+
hs = hs.flatten(1)
|
| 561 |
+
else:
|
| 562 |
+
hs = hs.mean(1)
|
| 563 |
+
out = self.classifier(hs)
|
| 564 |
+
logits['ori_out'] = logits
|
| 565 |
+
|
| 566 |
+
return
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
timm
|
| 6 |
+
opencv-python-headless
|
| 7 |
+
pillow
|
| 8 |
+
numpy
|