fountai's picture
push
fca8815
import argparse
from PIL import Image
import os
from src.flux.xflux_pipeline import XFluxPipeline
def create_argparser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt", type=str, required=True,
help="The input text prompt"
)
parser.add_argument(
"--neg_prompt", type=str, default="",
help="The input text negative prompt"
)
parser.add_argument(
"--img_prompt", type=str, default=None,
help="Path to input image prompt"
)
parser.add_argument(
"--neg_img_prompt", type=str, default=None,
help="Path to input negative image prompt"
)
parser.add_argument(
"--ip_scale", type=float, default=1.0,
help="Strength of input image prompt"
)
parser.add_argument(
"--neg_ip_scale", type=float, default=1.0,
help="Strength of negative input image prompt"
)
parser.add_argument(
"--local_path", type=str, default=None,
help="Local path to the model checkpoint (Controlnet)"
)
parser.add_argument(
"--repo_id", type=str, default=None,
help="A HuggingFace repo id to download model (Controlnet)"
)
parser.add_argument(
"--name", type=str, default=None,
help="A filename to download from HuggingFace"
)
parser.add_argument(
"--ip_repo_id", type=str, default=None,
help="A HuggingFace repo id to download model (IP-Adapter)"
)
parser.add_argument(
"--ip_name", type=str, default=None,
help="A IP-Adapter filename to download from HuggingFace"
)
parser.add_argument(
"--ip_local_path", type=str, default=None,
help="Local path to the model checkpoint (IP-Adapter)"
)
parser.add_argument(
"--lora_repo_id", type=str, default=None,
help="A HuggingFace repo id to download model (LoRA)"
)
parser.add_argument(
"--lora_name", type=str, default=None,
help="A LoRA filename to download from HuggingFace"
)
parser.add_argument(
"--lora_local_path", type=str, default=None,
help="Local path to the model checkpoint (Controlnet)"
)
parser.add_argument(
"--device", type=str, default="cuda",
help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
)
parser.add_argument(
"--offload", action='store_true', help="Offload model to CPU when not in use"
)
parser.add_argument(
"--use_ip", action='store_true', help="Load IP model"
)
parser.add_argument(
"--use_lora", action='store_true', help="Load Lora model"
)
parser.add_argument(
"--use_controlnet", action='store_true', help="Load Controlnet model"
)
parser.add_argument(
"--num_images_per_prompt", type=int, default=1,
help="The number of images to generate per prompt"
)
parser.add_argument(
"--image", type=str, default=None, help="Path to image"
)
parser.add_argument(
"--lora_weight", type=float, default=0.9, help="Lora model strength (from 0 to 1.0)"
)
parser.add_argument(
"--control_type", type=str, default="canny",
choices=("canny", "openpose", "depth", "hed", "hough", "tile"),
help="Name of controlnet condition, example: canny"
)
parser.add_argument(
"--model_type", type=str, default="flux-dev",
choices=("flux-dev", "flux-dev-fp8", "flux-schnell"),
help="Model type to use (flux-dev, flux-dev-fp8, flux-schnell)"
)
parser.add_argument(
"--width", type=int, default=1024, help="The width for generated image"
)
parser.add_argument(
"--height", type=int, default=1024, help="The height for generated image"
)
parser.add_argument(
"--num_steps", type=int, default=25, help="The num_steps for diffusion process"
)
parser.add_argument(
"--guidance", type=float, default=4, help="The guidance for diffusion process"
)
parser.add_argument(
"--seed", type=int, default=123456789, help="A seed for reproducible inference"
)
parser.add_argument(
"--true_gs", type=float, default=3.5, help="true guidance"
)
parser.add_argument(
"--timestep_to_start_cfg", type=int, default=5, help="timestep to start true guidance"
)
parser.add_argument(
"--save_path", type=str, default='results', help="Path to save"
)
return parser
def main(args):
if args.image:
image = Image.open(args.image)
else:
image = None
xflux_pipeline = XFluxPipeline(args.model_type, args.device, args.offload)
if args.use_ip:
print('load ip-adapter:', args.ip_local_path, args.ip_repo_id, args.ip_name)
xflux_pipeline.set_ip(args.ip_local_path, args.ip_repo_id, args.ip_name)
if args.use_lora:
print('load lora:', args.lora_local_path, args.lora_repo_id, args.lora_name)
xflux_pipeline.set_lora(args.lora_local_path, args.lora_repo_id, args.lora_name, args.lora_weight)
if args.use_controlnet:
print('load controlnet:', args.local_path, args.repo_id, args.name)
xflux_pipeline.set_controlnet(args.control_type, args.local_path, args.repo_id, args.name)
image_prompt = Image.open(args.img_prompt) if args.img_prompt else None
neg_image_prompt = Image.open(args.neg_img_prompt) if args.neg_img_prompt else None
for _ in range(args.num_images_per_prompt):
result = xflux_pipeline(
prompt=args.prompt,
controlnet_image=image,
width=args.width,
height=args.height,
guidance=args.guidance,
num_steps=args.num_steps,
seed=args.seed,
true_gs=args.true_gs,
neg_prompt=args.neg_prompt,
timestep_to_start_cfg=args.timestep_to_start_cfg,
image_prompt=image_prompt,
neg_image_prompt=neg_image_prompt,
ip_scale=args.ip_scale,
neg_ip_scale=args.neg_ip_scale,
)
if not os.path.exists(args.save_path):
os.mkdir(args.save_path)
ind = len(os.listdir(args.save_path))
result.save(os.path.join(args.save_path, f"result_{ind}.png"))
args.seed = args.seed + 1
if __name__ == "__main__":
args = create_argparser().parse_args()
main(args)