from __future__ import annotations import json import os import re import subprocess import warnings from itertools import groupby from logging import getLogger from pathlib import Path from typing import Any, Literal, Sequence import matplotlib import matplotlib.pylab as plt import numpy as np import requests import torch import torch.backends.mps import torch.nn as nn import torchaudio from cm_time import timer from numpy import ndarray from tqdm import tqdm from transformers import HubertModel from so_vits_svc_fork.hparams import HParams LOG = getLogger(__name__) HUBERT_SAMPLING_RATE = 16000 IS_COLAB = os.getenv("COLAB_RELEASE_TAG", False) def get_optimal_device(index: int = 0) -> torch.device: if torch.cuda.is_available(): return torch.device(f"cuda:{index % torch.cuda.device_count()}") elif torch.backends.mps.is_available(): return torch.device("mps") else: try: import torch_xla.core.xla_model as xm # noqa if xm.xrt_world_size() > 0: return torch.device("xla") # return xm.xla_device() except ImportError: pass return torch.device("cpu") def download_file( url: str, filepath: Path | str, chunk_size: int = 64 * 1024, tqdm_cls: type = tqdm, skip_if_exists: bool = False, overwrite: bool = False, **tqdm_kwargs: Any, ): if skip_if_exists is True and overwrite is True: raise ValueError("skip_if_exists and overwrite cannot be both True") filepath = Path(filepath) filepath.parent.mkdir(parents=True, exist_ok=True) temppath = filepath.parent / f"{filepath.name}.download" if filepath.exists(): if skip_if_exists: return elif not overwrite: filepath.unlink() else: raise FileExistsError(f"{filepath} already exists") temppath.unlink(missing_ok=True) resp = requests.get(url, stream=True) total = int(resp.headers.get("content-length", 0)) kwargs = dict( total=total, unit="iB", unit_scale=True, unit_divisor=1024, desc=f"Downloading {filepath.name}", ) kwargs.update(tqdm_kwargs) with temppath.open("wb") as f, tqdm_cls(**kwargs) as pbar: for data in resp.iter_content(chunk_size=chunk_size): size = f.write(data) pbar.update(size) temppath.rename(filepath) PRETRAINED_MODEL_URLS = { "hifi-gan": [ [ "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/D_0.pth", "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/G_0.pth", ], [ "https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/D_0.pth", "https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/G_0.pth", ], ], "contentvec": [ [ "https://huggingface.co/therealvul/so-vits-svc-4.0-init/resolve/main/checkpoint_best_legacy_500.pt" ], [ "https://huggingface.co/Himawari00/so-vits-svc4.0-pretrain-models/resolve/main/checkpoint_best_legacy_500.pt" ], [ "http://obs.cstcloud.cn/share/obs/sankagenkeshi/checkpoint_best_legacy_500.pt" ], ], } from joblib import Parallel, delayed def ensure_pretrained_model( folder_path: Path | str, type_: str | dict[str, str], **tqdm_kwargs: Any ) -> tuple[Path, ...] | None: folder_path = Path(folder_path) # new code if not isinstance(type_, str): try: Parallel(n_jobs=len(type_))( [ delayed(download_file)( url, folder_path / filename, position=i, skip_if_exists=True, **tqdm_kwargs, ) for i, (filename, url) in enumerate(type_.items()) ] ) return tuple(folder_path / filename for filename in type_.values()) except Exception as e: LOG.error(f"Failed to download {type_}") LOG.exception(e) # old code models_candidates = PRETRAINED_MODEL_URLS.get(type_, None) if models_candidates is None: LOG.warning(f"Unknown pretrained model type: {type_}") return for model_urls in models_candidates: paths = [folder_path / model_url.split("/")[-1] for model_url in model_urls] try: Parallel(n_jobs=len(paths))( [ delayed(download_file)( url, path, position=i, skip_if_exists=True, **tqdm_kwargs ) for i, (url, path) in enumerate(zip(model_urls, paths)) ] ) return tuple(paths) except Exception as e: LOG.error(f"Failed to download {model_urls}") LOG.exception(e) class HubertModelWithFinalProj(HubertModel): def __init__(self, config): super().__init__(config) # The final projection layer is only used for backward compatibility. # Following https://github.com/auspicious3000/contentvec/issues/6 # Remove this layer is necessary to achieve the desired outcome. self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size) def remove_weight_norm_if_exists(module, name: str = "weight"): r"""Removes the weight normalization reparameterization from a module. Args: module (Module): containing module name (str, optional): name of weight parameter Example: >>> m = weight_norm(nn.Linear(20, 40)) >>> remove_weight_norm(m) """ from torch.nn.utils.weight_norm import WeightNorm for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, WeightNorm) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] return module def get_hubert_model( device: str | torch.device, final_proj: bool = True ) -> HubertModel: if final_proj: model = HubertModelWithFinalProj.from_pretrained("lengyue233/content-vec-best") else: model = HubertModel.from_pretrained("lengyue233/content-vec-best") # Hubert is always used in inference mode, we can safely remove weight-norms for m in model.modules(): if isinstance(m, (nn.Conv2d, nn.Conv1d)): remove_weight_norm_if_exists(m) return model.to(device) def get_content( cmodel: HubertModel, audio: torch.Tensor | ndarray[Any, Any], device: torch.device | str, sr: int, legacy_final_proj: bool = False, ) -> torch.Tensor: audio = torch.as_tensor(audio) if sr != HUBERT_SAMPLING_RATE: audio = ( torchaudio.transforms.Resample(sr, HUBERT_SAMPLING_RATE) .to(audio.device)(audio) .to(device) ) if audio.ndim == 1: audio = audio.unsqueeze(0) with torch.no_grad(), timer() as t: if legacy_final_proj: warnings.warn("legacy_final_proj is deprecated") if not hasattr(cmodel, "final_proj"): raise ValueError("HubertModel does not have final_proj") c = cmodel(audio, output_hidden_states=True)["hidden_states"][9] c = cmodel.final_proj(c) else: c = cmodel(audio)["last_hidden_state"] c = c.transpose(1, 2) wav_len = audio.shape[-1] / HUBERT_SAMPLING_RATE LOG.info( f"HuBERT inference time : {t.elapsed:.3f}s, RTF: {t.elapsed / wav_len:.3f}" ) return c def _substitute_if_same_shape(to_: dict[str, Any], from_: dict[str, Any]) -> None: not_in_to = list(filter(lambda x: x not in to_, from_.keys())) not_in_from = list(filter(lambda x: x not in from_, to_.keys())) if not_in_to: warnings.warn(f"Keys not found in model state dict:" f"{not_in_to}") if not_in_from: warnings.warn(f"Keys not found in checkpoint state dict:" f"{not_in_from}") shape_missmatch = [] for k, v in from_.items(): if k not in to_: pass elif hasattr(v, "shape"): if not hasattr(to_[k], "shape"): raise ValueError(f"Key {k} is not a tensor") if to_[k].shape == v.shape: to_[k] = v else: shape_missmatch.append((k, to_[k].shape, v.shape)) elif isinstance(v, dict): assert isinstance(to_[k], dict) _substitute_if_same_shape(to_[k], v) else: to_[k] = v if shape_missmatch: warnings.warn( f"Shape mismatch: {[f'{k}: {v1} -> {v2}' for k, v1, v2 in shape_missmatch]}" ) def safe_load(model: torch.nn.Module, state_dict: dict[str, Any]) -> None: model_state_dict = model.state_dict() _substitute_if_same_shape(model_state_dict, state_dict) model.load_state_dict(model_state_dict) def load_checkpoint( checkpoint_path: Path | str, model: torch.nn.Module, optimizer: torch.optim.Optimizer | None = None, skip_optimizer: bool = False, ) -> tuple[torch.nn.Module, torch.optim.Optimizer | None, float, int]: if not Path(checkpoint_path).is_file(): raise FileNotFoundError(f"File {checkpoint_path} not found") with Path(checkpoint_path).open("rb") as f: with warnings.catch_warnings(): warnings.filterwarnings( "ignore", category=UserWarning, message="TypedStorage is deprecated" ) checkpoint_dict = torch.load(f, map_location="cpu", weights_only=True) iteration = checkpoint_dict["iteration"] learning_rate = checkpoint_dict["learning_rate"] # safe load module if hasattr(model, "module"): safe_load(model.module, checkpoint_dict["model"]) else: safe_load(model, checkpoint_dict["model"]) # safe load optim if ( optimizer is not None and not skip_optimizer and checkpoint_dict["optimizer"] is not None ): with warnings.catch_warnings(): warnings.simplefilter("ignore") safe_load(optimizer, checkpoint_dict["optimizer"]) LOG.info(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})") return model, optimizer, learning_rate, iteration def save_checkpoint( model: torch.nn.Module, optimizer: torch.optim.Optimizer, learning_rate: float, iteration: int, checkpoint_path: Path | str, ) -> None: LOG.info( "Saving model and optimizer state at epoch {} to {}".format( iteration, checkpoint_path ) ) if hasattr(model, "module"): state_dict = model.module.state_dict() else: state_dict = model.state_dict() with Path(checkpoint_path).open("wb") as f: torch.save( { "model": state_dict, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate, }, f, ) def clean_checkpoints( path_to_models: Path | str, n_ckpts_to_keep: int = 2, sort_by_time: bool = True ) -> None: """Freeing up space by deleting saved ckpts Arguments: path_to_models -- Path to the model directory n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth sort_by_time -- True -> chronologically delete ckpts False -> lexicographically delete ckpts """ LOG.info("Cleaning old checkpoints...") path_to_models = Path(path_to_models) # Define sort key functions name_key = lambda p: int(re.match(r"[GD]_(\d+)", p.stem).group(1)) time_key = lambda p: p.stat().st_mtime path_key = lambda p: (p.stem[0], time_key(p) if sort_by_time else name_key(p)) models = list( filter( lambda p: ( p.is_file() and re.match(r"[GD]_\d+", p.stem) and not p.stem.endswith("_0") ), path_to_models.glob("*.pth"), ) ) models_sorted = sorted(models, key=path_key) models_sorted_grouped = groupby(models_sorted, lambda p: p.stem[0]) for group_name, group_items in models_sorted_grouped: to_delete_list = list(group_items)[:-n_ckpts_to_keep] for to_delete in to_delete_list: if to_delete.exists(): LOG.info(f"Removing {to_delete}") if IS_COLAB: to_delete.write_text("") to_delete.unlink() def latest_checkpoint_path(dir_path: Path | str, regex: str = "G_*.pth") -> Path | None: dir_path = Path(dir_path) name_key = lambda p: int(re.match(r"._(\d+)\.pth", p.name).group(1)) paths = list(sorted(dir_path.glob(regex), key=name_key)) if len(paths) == 0: return None return paths[-1] def plot_spectrogram_to_numpy(spectrogram: ndarray) -> ndarray: matplotlib.use("Agg") fig, ax = plt.subplots(figsize=(10, 2)) im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") plt.colorbar(im, ax=ax) plt.xlabel("Frames") plt.ylabel("Channels") plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def get_backup_hparams( config_path: Path, model_path: Path, init: bool = True ) -> HParams: model_path.mkdir(parents=True, exist_ok=True) config_save_path = model_path / "config.json" if init: with config_path.open() as f: data = f.read() with config_save_path.open("w") as f: f.write(data) else: with config_save_path.open() as f: data = f.read() config = json.loads(data) hparams = HParams(**config) hparams.model_dir = model_path.as_posix() return hparams def get_hparams(config_path: Path | str) -> HParams: config = json.loads(Path(config_path).read_text("utf-8")) hparams = HParams(**config) return hparams def repeat_expand_2d(content: torch.Tensor, target_len: int) -> torch.Tensor: # content : [h, t] src_len = content.shape[-1] if target_len < src_len: return content[:, :target_len] else: return torch.nn.functional.interpolate( content.unsqueeze(0), size=target_len, mode="nearest" ).squeeze(0) def plot_data_to_numpy(x: ndarray, y: ndarray) -> ndarray: matplotlib.use("Agg") fig, ax = plt.subplots(figsize=(10, 2)) plt.plot(x) plt.plot(y) plt.tight_layout() fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) plt.close() return data def get_gpu_memory(type_: Literal["total", "free", "used"]) -> Sequence[int] | None: command = f"nvidia-smi --query-gpu=memory.{type_} --format=csv" try: memory_free_info = ( subprocess.check_output(command.split()) .decode("ascii") .split("\n")[:-1][1:] ) memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)] return memory_free_values except Exception: return def get_total_gpu_memory(type_: Literal["total", "free", "used"]) -> int | None: memories = get_gpu_memory(type_) if memories is None: return return sum(memories)