Spaces:
Runtime error
Runtime error
read the last_update file with the date and time the update process was last run
Browse files
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
README.md
CHANGED
|
@@ -7,7 +7,6 @@ sdk: gradio
|
|
| 7 |
sdk_version: 3.4
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
startup_duration_timeout: 2h
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
|
| 7 |
sdk_version: 3.4
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
CHANGED
|
@@ -1,16 +1,10 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
-
import requests
|
| 4 |
|
| 5 |
import datetime
|
| 6 |
import gradio as gr
|
| 7 |
import pandas as pd
|
| 8 |
-
from huggingface_hub import HfApi,
|
| 9 |
-
from huggingface_hub.repocard import metadata_load
|
| 10 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
from tqdm.contrib.concurrent import thread_map
|
| 14 |
|
| 15 |
from utils import make_clickable_model
|
| 16 |
from utils import make_clickable_user
|
|
@@ -26,153 +20,6 @@ api = HfApi(token=HF_TOKEN)
|
|
| 26 |
with open('envs.json', 'r') as f:
|
| 27 |
rl_envs = json.load(f)
|
| 28 |
|
| 29 |
-
def get_metadata(model_id):
|
| 30 |
-
try:
|
| 31 |
-
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
| 32 |
-
return metadata_load(readme_path)
|
| 33 |
-
except requests.exceptions.HTTPError:
|
| 34 |
-
# 404 README.md not found
|
| 35 |
-
return None
|
| 36 |
-
|
| 37 |
-
def parse_metrics_accuracy(meta):
|
| 38 |
-
if "model-index" not in meta:
|
| 39 |
-
return None
|
| 40 |
-
result = meta["model-index"][0]["results"]
|
| 41 |
-
metrics = result[0]["metrics"]
|
| 42 |
-
accuracy = metrics[0]["value"]
|
| 43 |
-
return accuracy
|
| 44 |
-
|
| 45 |
-
# We keep the worst case episode
|
| 46 |
-
def parse_rewards(accuracy):
|
| 47 |
-
default_std = -1000
|
| 48 |
-
default_reward=-1000
|
| 49 |
-
if accuracy != None:
|
| 50 |
-
accuracy = str(accuracy)
|
| 51 |
-
parsed = accuracy.split('+/-')
|
| 52 |
-
if len(parsed)>1:
|
| 53 |
-
mean_reward = float(parsed[0].strip())
|
| 54 |
-
std_reward = float(parsed[1].strip())
|
| 55 |
-
elif len(parsed)==1: #only mean reward
|
| 56 |
-
mean_reward = float(parsed[0].strip())
|
| 57 |
-
std_reward = float(0)
|
| 58 |
-
else:
|
| 59 |
-
mean_reward = float(default_std)
|
| 60 |
-
std_reward = float(default_reward)
|
| 61 |
-
|
| 62 |
-
else:
|
| 63 |
-
mean_reward = float(default_std)
|
| 64 |
-
std_reward = float(default_reward)
|
| 65 |
-
return mean_reward, std_reward
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def get_model_ids(rl_env):
|
| 69 |
-
api = HfApi()
|
| 70 |
-
models = api.list_models(filter=rl_env)
|
| 71 |
-
model_ids = [x.modelId for x in models]
|
| 72 |
-
return model_ids
|
| 73 |
-
|
| 74 |
-
# Parralelized version
|
| 75 |
-
def update_leaderboard_dataset_parallel(rl_env, path):
|
| 76 |
-
# Get model ids associated with rl_env
|
| 77 |
-
model_ids = get_model_ids(rl_env)
|
| 78 |
-
|
| 79 |
-
def process_model(model_id):
|
| 80 |
-
meta = get_metadata(model_id)
|
| 81 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
| 82 |
-
if meta is None:
|
| 83 |
-
return None
|
| 84 |
-
user_id = model_id.split('/')[0]
|
| 85 |
-
row = {}
|
| 86 |
-
row["User"] = user_id
|
| 87 |
-
row["Model"] = model_id
|
| 88 |
-
accuracy = parse_metrics_accuracy(meta)
|
| 89 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
| 90 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
| 91 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
| 92 |
-
row["Results"] = mean_reward - std_reward
|
| 93 |
-
row["Mean Reward"] = mean_reward
|
| 94 |
-
row["Std Reward"] = std_reward
|
| 95 |
-
return row
|
| 96 |
-
|
| 97 |
-
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
| 98 |
-
|
| 99 |
-
# Filter out None results (models with no metadata)
|
| 100 |
-
data = [row for row in data if row is not None]
|
| 101 |
-
|
| 102 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
| 103 |
-
new_history = ranked_dataframe
|
| 104 |
-
file_path = path + "/" + rl_env + ".csv"
|
| 105 |
-
new_history.to_csv(file_path, index=False)
|
| 106 |
-
|
| 107 |
-
return ranked_dataframe
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def update_leaderboard_dataset(rl_env, path):
|
| 111 |
-
# Get model ids associated with rl_env
|
| 112 |
-
model_ids = get_model_ids(rl_env)
|
| 113 |
-
data = []
|
| 114 |
-
for model_id in model_ids:
|
| 115 |
-
"""
|
| 116 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 117 |
-
meta = metadata_load(readme_path)
|
| 118 |
-
"""
|
| 119 |
-
meta = get_metadata(model_id)
|
| 120 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
| 121 |
-
if meta is None:
|
| 122 |
-
continue
|
| 123 |
-
user_id = model_id.split('/')[0]
|
| 124 |
-
row = {}
|
| 125 |
-
row["User"] = user_id
|
| 126 |
-
row["Model"] = model_id
|
| 127 |
-
accuracy = parse_metrics_accuracy(meta)
|
| 128 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
| 129 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
| 130 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
| 131 |
-
row["Results"] = mean_reward - std_reward
|
| 132 |
-
row["Mean Reward"] = mean_reward
|
| 133 |
-
row["Std Reward"] = std_reward
|
| 134 |
-
data.append(row)
|
| 135 |
-
|
| 136 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
| 137 |
-
new_history = ranked_dataframe
|
| 138 |
-
file_path = path + "/" + rl_env + ".csv"
|
| 139 |
-
new_history.to_csv(file_path, index=False)
|
| 140 |
-
|
| 141 |
-
return ranked_dataframe
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
| 145 |
-
"""
|
| 146 |
-
Get data from rl_env
|
| 147 |
-
:return: data as a pandas DataFrame
|
| 148 |
-
"""
|
| 149 |
-
csv_path = path + "/" + rl_env + ".csv"
|
| 150 |
-
data = pd.read_csv(csv_path)
|
| 151 |
-
|
| 152 |
-
return data
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
def rank_dataframe(dataframe):
|
| 156 |
-
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
| 157 |
-
if not 'Ranking' in dataframe.columns:
|
| 158 |
-
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
| 159 |
-
else:
|
| 160 |
-
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
| 161 |
-
return dataframe
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def run_update_dataset():
|
| 165 |
-
path_ = download_leaderboard_dataset()
|
| 166 |
-
for i in range(0, len(rl_envs)):
|
| 167 |
-
rl_env = rl_envs[i]
|
| 168 |
-
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
|
| 169 |
-
|
| 170 |
-
api.upload_folder(
|
| 171 |
-
folder_path=path_,
|
| 172 |
-
repo_id="pkalkman/drlc-leaderboard-data",
|
| 173 |
-
repo_type="dataset",
|
| 174 |
-
commit_message="Update dataset")
|
| 175 |
-
|
| 176 |
|
| 177 |
def download_leaderboard_dataset():
|
| 178 |
# Download the dataset from the Hugging Face Hub
|
|
@@ -197,16 +44,20 @@ def get_data(rl_env, path) -> pd.DataFrame:
|
|
| 197 |
|
| 198 |
def get_last_refresh_time(path) -> str:
|
| 199 |
"""
|
| 200 |
-
Get the
|
| 201 |
"""
|
| 202 |
-
#
|
| 203 |
-
|
| 204 |
|
| 205 |
-
#
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
|
| 212 |
with block:
|
|
@@ -215,19 +66,18 @@ with block:
|
|
| 215 |
last_refresh_time = get_last_refresh_time(path_)
|
| 216 |
|
| 217 |
gr.Markdown(f"""
|
| 218 |
-
# 🏆 Deep Reinforcement Learning Course Leaderboard 🏆
|
| 219 |
-
|
| 220 |
Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
|
| 221 |
""")
|
| 222 |
|
| 223 |
-
|
| 224 |
for i in range(0, len(rl_envs)):
|
| 225 |
rl_env = rl_envs[i]
|
| 226 |
with gr.TabItem(rl_env["rl_env_beautiful"]):
|
| 227 |
with gr.Row():
|
| 228 |
markdown = f"""
|
| 229 |
# {rl_env['rl_env_beautiful']}
|
| 230 |
-
|
| 231 |
### Leaderboard for {rl_env['rl_env_beautiful']}
|
| 232 |
"""
|
| 233 |
gr.Markdown(markdown)
|
|
@@ -242,4 +92,4 @@ with block:
|
|
| 242 |
row_count=(100, 'fixed')
|
| 243 |
)
|
| 244 |
|
| 245 |
-
block.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
|
|
|
| 3 |
|
| 4 |
import datetime
|
| 5 |
import gradio as gr
|
| 6 |
import pandas as pd
|
| 7 |
+
from huggingface_hub import HfApi, snapshot_download
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from utils import make_clickable_model
|
| 10 |
from utils import make_clickable_user
|
|
|
|
| 20 |
with open('envs.json', 'r') as f:
|
| 21 |
rl_envs = json.load(f)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def download_leaderboard_dataset():
|
| 25 |
# Download the dataset from the Hugging Face Hub
|
|
|
|
| 44 |
|
| 45 |
def get_last_refresh_time(path) -> str:
|
| 46 |
"""
|
| 47 |
+
Get the last update time from the last_update.txt file in the dataset path.
|
| 48 |
"""
|
| 49 |
+
# Path to the last_update.txt file
|
| 50 |
+
update_file_path = os.path.join(path, 'last_update.txt')
|
| 51 |
|
| 52 |
+
# Check if the file exists
|
| 53 |
+
if os.path.exists(update_file_path):
|
| 54 |
+
# Read the content of the file (the timestamp)
|
| 55 |
+
with open(update_file_path, 'r') as f:
|
| 56 |
+
last_refresh_time = f.read().strip()
|
| 57 |
+
return last_refresh_time
|
| 58 |
+
else:
|
| 59 |
+
# Fallback: If the file is missing, return a default message
|
| 60 |
+
return "Last update time not available"
|
| 61 |
|
| 62 |
|
| 63 |
with block:
|
|
|
|
| 66 |
last_refresh_time = get_last_refresh_time(path_)
|
| 67 |
|
| 68 |
gr.Markdown(f"""
|
| 69 |
+
# 🏆 Deep Reinforcement Learning Course Leaderboard (Mirror)🏆
|
| 70 |
+
|
| 71 |
Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
|
| 72 |
""")
|
| 73 |
|
|
|
|
| 74 |
for i in range(0, len(rl_envs)):
|
| 75 |
rl_env = rl_envs[i]
|
| 76 |
with gr.TabItem(rl_env["rl_env_beautiful"]):
|
| 77 |
with gr.Row():
|
| 78 |
markdown = f"""
|
| 79 |
# {rl_env['rl_env_beautiful']}
|
| 80 |
+
|
| 81 |
### Leaderboard for {rl_env['rl_env_beautiful']}
|
| 82 |
"""
|
| 83 |
gr.Markdown(markdown)
|
|
|
|
| 92 |
row_count=(100, 'fixed')
|
| 93 |
)
|
| 94 |
|
| 95 |
+
block.launch()
|