Spaces:
Runtime error
Runtime error
read the last_update file with the date and time the update process was last run
Browse files
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
CHANGED
@@ -7,7 +7,6 @@ sdk: gradio
|
|
7 |
sdk_version: 3.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
startup_duration_timeout: 2h
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
7 |
sdk_version: 3.4
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import requests
|
4 |
|
5 |
import datetime
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
-
from huggingface_hub import HfApi,
|
9 |
-
from huggingface_hub.repocard import metadata_load
|
10 |
-
from apscheduler.schedulers.background import BackgroundScheduler
|
11 |
-
|
12 |
-
|
13 |
-
from tqdm.contrib.concurrent import thread_map
|
14 |
|
15 |
from utils import make_clickable_model
|
16 |
from utils import make_clickable_user
|
@@ -26,153 +20,6 @@ api = HfApi(token=HF_TOKEN)
|
|
26 |
with open('envs.json', 'r') as f:
|
27 |
rl_envs = json.load(f)
|
28 |
|
29 |
-
def get_metadata(model_id):
|
30 |
-
try:
|
31 |
-
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
32 |
-
return metadata_load(readme_path)
|
33 |
-
except requests.exceptions.HTTPError:
|
34 |
-
# 404 README.md not found
|
35 |
-
return None
|
36 |
-
|
37 |
-
def parse_metrics_accuracy(meta):
|
38 |
-
if "model-index" not in meta:
|
39 |
-
return None
|
40 |
-
result = meta["model-index"][0]["results"]
|
41 |
-
metrics = result[0]["metrics"]
|
42 |
-
accuracy = metrics[0]["value"]
|
43 |
-
return accuracy
|
44 |
-
|
45 |
-
# We keep the worst case episode
|
46 |
-
def parse_rewards(accuracy):
|
47 |
-
default_std = -1000
|
48 |
-
default_reward=-1000
|
49 |
-
if accuracy != None:
|
50 |
-
accuracy = str(accuracy)
|
51 |
-
parsed = accuracy.split('+/-')
|
52 |
-
if len(parsed)>1:
|
53 |
-
mean_reward = float(parsed[0].strip())
|
54 |
-
std_reward = float(parsed[1].strip())
|
55 |
-
elif len(parsed)==1: #only mean reward
|
56 |
-
mean_reward = float(parsed[0].strip())
|
57 |
-
std_reward = float(0)
|
58 |
-
else:
|
59 |
-
mean_reward = float(default_std)
|
60 |
-
std_reward = float(default_reward)
|
61 |
-
|
62 |
-
else:
|
63 |
-
mean_reward = float(default_std)
|
64 |
-
std_reward = float(default_reward)
|
65 |
-
return mean_reward, std_reward
|
66 |
-
|
67 |
-
|
68 |
-
def get_model_ids(rl_env):
|
69 |
-
api = HfApi()
|
70 |
-
models = api.list_models(filter=rl_env)
|
71 |
-
model_ids = [x.modelId for x in models]
|
72 |
-
return model_ids
|
73 |
-
|
74 |
-
# Parralelized version
|
75 |
-
def update_leaderboard_dataset_parallel(rl_env, path):
|
76 |
-
# Get model ids associated with rl_env
|
77 |
-
model_ids = get_model_ids(rl_env)
|
78 |
-
|
79 |
-
def process_model(model_id):
|
80 |
-
meta = get_metadata(model_id)
|
81 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
82 |
-
if meta is None:
|
83 |
-
return None
|
84 |
-
user_id = model_id.split('/')[0]
|
85 |
-
row = {}
|
86 |
-
row["User"] = user_id
|
87 |
-
row["Model"] = model_id
|
88 |
-
accuracy = parse_metrics_accuracy(meta)
|
89 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
90 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
91 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
92 |
-
row["Results"] = mean_reward - std_reward
|
93 |
-
row["Mean Reward"] = mean_reward
|
94 |
-
row["Std Reward"] = std_reward
|
95 |
-
return row
|
96 |
-
|
97 |
-
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
98 |
-
|
99 |
-
# Filter out None results (models with no metadata)
|
100 |
-
data = [row for row in data if row is not None]
|
101 |
-
|
102 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
103 |
-
new_history = ranked_dataframe
|
104 |
-
file_path = path + "/" + rl_env + ".csv"
|
105 |
-
new_history.to_csv(file_path, index=False)
|
106 |
-
|
107 |
-
return ranked_dataframe
|
108 |
-
|
109 |
-
|
110 |
-
def update_leaderboard_dataset(rl_env, path):
|
111 |
-
# Get model ids associated with rl_env
|
112 |
-
model_ids = get_model_ids(rl_env)
|
113 |
-
data = []
|
114 |
-
for model_id in model_ids:
|
115 |
-
"""
|
116 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
117 |
-
meta = metadata_load(readme_path)
|
118 |
-
"""
|
119 |
-
meta = get_metadata(model_id)
|
120 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
121 |
-
if meta is None:
|
122 |
-
continue
|
123 |
-
user_id = model_id.split('/')[0]
|
124 |
-
row = {}
|
125 |
-
row["User"] = user_id
|
126 |
-
row["Model"] = model_id
|
127 |
-
accuracy = parse_metrics_accuracy(meta)
|
128 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
129 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
130 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
131 |
-
row["Results"] = mean_reward - std_reward
|
132 |
-
row["Mean Reward"] = mean_reward
|
133 |
-
row["Std Reward"] = std_reward
|
134 |
-
data.append(row)
|
135 |
-
|
136 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
137 |
-
new_history = ranked_dataframe
|
138 |
-
file_path = path + "/" + rl_env + ".csv"
|
139 |
-
new_history.to_csv(file_path, index=False)
|
140 |
-
|
141 |
-
return ranked_dataframe
|
142 |
-
|
143 |
-
|
144 |
-
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
145 |
-
"""
|
146 |
-
Get data from rl_env
|
147 |
-
:return: data as a pandas DataFrame
|
148 |
-
"""
|
149 |
-
csv_path = path + "/" + rl_env + ".csv"
|
150 |
-
data = pd.read_csv(csv_path)
|
151 |
-
|
152 |
-
return data
|
153 |
-
|
154 |
-
|
155 |
-
def rank_dataframe(dataframe):
|
156 |
-
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
157 |
-
if not 'Ranking' in dataframe.columns:
|
158 |
-
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
159 |
-
else:
|
160 |
-
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
161 |
-
return dataframe
|
162 |
-
|
163 |
-
|
164 |
-
def run_update_dataset():
|
165 |
-
path_ = download_leaderboard_dataset()
|
166 |
-
for i in range(0, len(rl_envs)):
|
167 |
-
rl_env = rl_envs[i]
|
168 |
-
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
|
169 |
-
|
170 |
-
api.upload_folder(
|
171 |
-
folder_path=path_,
|
172 |
-
repo_id="pkalkman/drlc-leaderboard-data",
|
173 |
-
repo_type="dataset",
|
174 |
-
commit_message="Update dataset")
|
175 |
-
|
176 |
|
177 |
def download_leaderboard_dataset():
|
178 |
# Download the dataset from the Hugging Face Hub
|
@@ -197,16 +44,20 @@ def get_data(rl_env, path) -> pd.DataFrame:
|
|
197 |
|
198 |
def get_last_refresh_time(path) -> str:
|
199 |
"""
|
200 |
-
Get the
|
201 |
"""
|
202 |
-
#
|
203 |
-
|
204 |
|
205 |
-
#
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
210 |
|
211 |
|
212 |
with block:
|
@@ -215,19 +66,18 @@ with block:
|
|
215 |
last_refresh_time = get_last_refresh_time(path_)
|
216 |
|
217 |
gr.Markdown(f"""
|
218 |
-
# 🏆 Deep Reinforcement Learning Course Leaderboard 🏆
|
219 |
-
|
220 |
Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
|
221 |
""")
|
222 |
|
223 |
-
|
224 |
for i in range(0, len(rl_envs)):
|
225 |
rl_env = rl_envs[i]
|
226 |
with gr.TabItem(rl_env["rl_env_beautiful"]):
|
227 |
with gr.Row():
|
228 |
markdown = f"""
|
229 |
# {rl_env['rl_env_beautiful']}
|
230 |
-
|
231 |
### Leaderboard for {rl_env['rl_env_beautiful']}
|
232 |
"""
|
233 |
gr.Markdown(markdown)
|
@@ -242,4 +92,4 @@ with block:
|
|
242 |
row_count=(100, 'fixed')
|
243 |
)
|
244 |
|
245 |
-
block.launch()
|
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
|
4 |
import datetime
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
+
from huggingface_hub import HfApi, snapshot_download
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
from utils import make_clickable_model
|
10 |
from utils import make_clickable_user
|
|
|
20 |
with open('envs.json', 'r') as f:
|
21 |
rl_envs = json.load(f)
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def download_leaderboard_dataset():
|
25 |
# Download the dataset from the Hugging Face Hub
|
|
|
44 |
|
45 |
def get_last_refresh_time(path) -> str:
|
46 |
"""
|
47 |
+
Get the last update time from the last_update.txt file in the dataset path.
|
48 |
"""
|
49 |
+
# Path to the last_update.txt file
|
50 |
+
update_file_path = os.path.join(path, 'last_update.txt')
|
51 |
|
52 |
+
# Check if the file exists
|
53 |
+
if os.path.exists(update_file_path):
|
54 |
+
# Read the content of the file (the timestamp)
|
55 |
+
with open(update_file_path, 'r') as f:
|
56 |
+
last_refresh_time = f.read().strip()
|
57 |
+
return last_refresh_time
|
58 |
+
else:
|
59 |
+
# Fallback: If the file is missing, return a default message
|
60 |
+
return "Last update time not available"
|
61 |
|
62 |
|
63 |
with block:
|
|
|
66 |
last_refresh_time = get_last_refresh_time(path_)
|
67 |
|
68 |
gr.Markdown(f"""
|
69 |
+
# 🏆 Deep Reinforcement Learning Course Leaderboard (Mirror)🏆
|
70 |
+
|
71 |
Presenting the latest leaderboard from the Hugging Face Deep RL Course - refresh ({last_refresh_time}).
|
72 |
""")
|
73 |
|
|
|
74 |
for i in range(0, len(rl_envs)):
|
75 |
rl_env = rl_envs[i]
|
76 |
with gr.TabItem(rl_env["rl_env_beautiful"]):
|
77 |
with gr.Row():
|
78 |
markdown = f"""
|
79 |
# {rl_env['rl_env_beautiful']}
|
80 |
+
|
81 |
### Leaderboard for {rl_env['rl_env_beautiful']}
|
82 |
"""
|
83 |
gr.Markdown(markdown)
|
|
|
92 |
row_count=(100, 'fixed')
|
93 |
)
|
94 |
|
95 |
+
block.launch()
|