Spaces:
Runtime error
Runtime error
just playing around
Browse files
app.py
CHANGED
@@ -30,7 +30,7 @@ rl_envs = [
|
|
30 |
{
|
31 |
"rl_env_beautiful": "CartPole-v1",
|
32 |
"rl_env": "CartPole-v1",
|
33 |
-
"video_link": "
|
34 |
"global": None
|
35 |
},
|
36 |
{
|
@@ -149,264 +149,50 @@ rl_envs = [
|
|
149 |
}
|
150 |
]
|
151 |
|
152 |
-
def restart():
|
153 |
-
print("RESTART")
|
154 |
-
api.restart_space(repo_id="huggingface-projects/Deep-Reinforcement-Learning-Leaderboard")
|
155 |
-
|
156 |
-
def get_metadata(model_id):
|
157 |
-
try:
|
158 |
-
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
159 |
-
return metadata_load(readme_path)
|
160 |
-
except requests.exceptions.HTTPError:
|
161 |
-
# 404 README.md not found
|
162 |
-
return None
|
163 |
-
|
164 |
-
def parse_metrics_accuracy(meta):
|
165 |
-
if "model-index" not in meta:
|
166 |
-
return None
|
167 |
-
result = meta["model-index"][0]["results"]
|
168 |
-
metrics = result[0]["metrics"]
|
169 |
-
accuracy = metrics[0]["value"]
|
170 |
-
return accuracy
|
171 |
-
|
172 |
-
# We keep the worst case episode
|
173 |
-
def parse_rewards(accuracy):
|
174 |
-
default_std = -1000
|
175 |
-
default_reward=-1000
|
176 |
-
if accuracy != None:
|
177 |
-
accuracy = str(accuracy)
|
178 |
-
parsed = accuracy.split('+/-')
|
179 |
-
if len(parsed)>1:
|
180 |
-
mean_reward = float(parsed[0].strip())
|
181 |
-
std_reward = float(parsed[1].strip())
|
182 |
-
elif len(parsed)==1: #only mean reward
|
183 |
-
mean_reward = float(parsed[0].strip())
|
184 |
-
std_reward = float(0)
|
185 |
-
else:
|
186 |
-
mean_reward = float(default_std)
|
187 |
-
std_reward = float(default_reward)
|
188 |
-
|
189 |
-
else:
|
190 |
-
mean_reward = float(default_std)
|
191 |
-
std_reward = float(default_reward)
|
192 |
-
return mean_reward, std_reward
|
193 |
-
|
194 |
-
|
195 |
-
def get_model_ids(rl_env):
|
196 |
-
api = HfApi()
|
197 |
-
models = api.list_models(filter=rl_env)
|
198 |
-
model_ids = [x.modelId for x in models]
|
199 |
-
return model_ids
|
200 |
-
|
201 |
-
# Parralelized version
|
202 |
-
def update_leaderboard_dataset_parallel(rl_env, path):
|
203 |
-
# Get model ids associated with rl_env
|
204 |
-
model_ids = get_model_ids(rl_env)
|
205 |
-
|
206 |
-
def process_model(model_id):
|
207 |
-
meta = get_metadata(model_id)
|
208 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
209 |
-
if meta is None:
|
210 |
-
return None
|
211 |
-
user_id = model_id.split('/')[0]
|
212 |
-
row = {}
|
213 |
-
row["User"] = user_id
|
214 |
-
row["Model"] = model_id
|
215 |
-
accuracy = parse_metrics_accuracy(meta)
|
216 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
217 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
218 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
219 |
-
row["Results"] = mean_reward - std_reward
|
220 |
-
row["Mean Reward"] = mean_reward
|
221 |
-
row["Std Reward"] = std_reward
|
222 |
-
return row
|
223 |
-
|
224 |
-
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
225 |
-
|
226 |
-
# Filter out None results (models with no metadata)
|
227 |
-
data = [row for row in data if row is not None]
|
228 |
-
|
229 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
230 |
-
new_history = ranked_dataframe
|
231 |
-
file_path = path + "/" + rl_env + ".csv"
|
232 |
-
new_history.to_csv(file_path, index=False)
|
233 |
-
|
234 |
-
return ranked_dataframe
|
235 |
-
|
236 |
-
|
237 |
-
def update_leaderboard_dataset(rl_env, path):
|
238 |
-
# Get model ids associated with rl_env
|
239 |
-
model_ids = get_model_ids(rl_env)
|
240 |
-
data = []
|
241 |
-
for model_id in model_ids:
|
242 |
-
"""
|
243 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
244 |
-
meta = metadata_load(readme_path)
|
245 |
-
"""
|
246 |
-
meta = get_metadata(model_id)
|
247 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
248 |
-
if meta is None:
|
249 |
-
continue
|
250 |
-
user_id = model_id.split('/')[0]
|
251 |
-
row = {}
|
252 |
-
row["User"] = user_id
|
253 |
-
row["Model"] = model_id
|
254 |
-
accuracy = parse_metrics_accuracy(meta)
|
255 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
256 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
257 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
258 |
-
row["Results"] = mean_reward - std_reward
|
259 |
-
row["Mean Reward"] = mean_reward
|
260 |
-
row["Std Reward"] = std_reward
|
261 |
-
data.append(row)
|
262 |
-
|
263 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
264 |
-
new_history = ranked_dataframe
|
265 |
-
file_path = path + "/" + rl_env + ".csv"
|
266 |
-
new_history.to_csv(file_path, index=False)
|
267 |
-
|
268 |
-
return ranked_dataframe
|
269 |
|
270 |
def download_leaderboard_dataset():
|
|
|
271 |
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
272 |
return path
|
273 |
|
|
|
274 |
def get_data(rl_env, path) -> pd.DataFrame:
|
275 |
"""
|
276 |
-
Get data from rl_env
|
277 |
-
:return: data as a pandas DataFrame
|
278 |
"""
|
279 |
-
csv_path = path
|
280 |
data = pd.read_csv(csv_path)
|
281 |
-
|
282 |
-
for index, row in data.iterrows():
|
283 |
-
user_id = row["User"]
|
284 |
-
data.loc[index, "User"] = make_clickable_user(user_id)
|
285 |
-
model_id = row["Model"]
|
286 |
-
data.loc[index, "Model"] = make_clickable_model(model_id)
|
287 |
-
|
288 |
return data
|
289 |
|
290 |
-
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
291 |
-
"""
|
292 |
-
Get data from rl_env
|
293 |
-
:return: data as a pandas DataFrame
|
294 |
-
"""
|
295 |
-
csv_path = path + "/" + rl_env + ".csv"
|
296 |
-
data = pd.read_csv(csv_path)
|
297 |
-
|
298 |
-
return data
|
299 |
-
|
300 |
-
def rank_dataframe(dataframe):
|
301 |
-
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
302 |
-
if not 'Ranking' in dataframe.columns:
|
303 |
-
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
304 |
-
else:
|
305 |
-
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
306 |
-
return dataframe
|
307 |
-
|
308 |
-
|
309 |
-
def run_update_dataset():
|
310 |
-
path_ = download_leaderboard_dataset()
|
311 |
-
for i in range(0, len(rl_envs)):
|
312 |
-
rl_env = rl_envs[i]
|
313 |
-
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
|
314 |
-
|
315 |
-
api.upload_folder(
|
316 |
-
folder_path=path_,
|
317 |
-
repo_id="huggingface-projects/drlc-leaderboard-data",
|
318 |
-
repo_type="dataset",
|
319 |
-
commit_message="Update dataset")
|
320 |
-
|
321 |
-
def filter_data(rl_env, path, user_id):
|
322 |
-
data_df = get_data_no_html(rl_env, path)
|
323 |
-
models = []
|
324 |
-
models = data_df[data_df["User"] == user_id]
|
325 |
-
|
326 |
-
for index, row in models.iterrows():
|
327 |
-
user_id = row["User"]
|
328 |
-
models.loc[index, "User"] = make_clickable_user(user_id)
|
329 |
-
model_id = row["Model"]
|
330 |
-
models.loc[index, "Model"] = make_clickable_model(model_id)
|
331 |
-
|
332 |
-
|
333 |
-
return models
|
334 |
-
|
335 |
-
run_update_dataset()
|
336 |
|
337 |
with block:
|
338 |
-
gr.Markdown(
|
339 |
-
# π
|
340 |
-
|
341 |
-
This is the leaderboard of trained agents during the <a href="https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt">Deep Reinforcement Learning Course</a>. A free course from beginner to expert.
|
342 |
-
|
343 |
-
### We only display the best 100 models
|
344 |
-
If you want to **find yours, type your user id and click on Search my models.**
|
345 |
-
You **can click on the model's name** to be redirected to its model card, including documentation.
|
346 |
|
347 |
-
|
348 |
-
We use **lower bound result to sort the models: mean_reward - std_reward.**
|
349 |
-
|
350 |
-
### I can't find my model π
|
351 |
-
The leaderboard is **updated every two hours** if you can't find your models, just wait for the next update.
|
352 |
-
|
353 |
-
### The Deep RL Course
|
354 |
-
π€ You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course π€ </a>.
|
355 |
-
|
356 |
-
π§ There is an **environment missing?** Please open an issue.
|
357 |
""")
|
|
|
358 |
path_ = download_leaderboard_dataset()
|
359 |
|
360 |
for i in range(0, len(rl_envs)):
|
361 |
rl_env = rl_envs[i]
|
362 |
-
with gr.TabItem(rl_env["rl_env_beautiful"])
|
363 |
with gr.Row():
|
364 |
-
markdown = """
|
365 |
-
# {
|
366 |
|
367 |
-
|
|
|
368 |
gr.Markdown(markdown)
|
369 |
-
|
370 |
-
|
371 |
-
with gr.Row():
|
372 |
-
gr.Markdown("""
|
373 |
-
## Search your models
|
374 |
-
Simply type your user id to find your models
|
375 |
-
""")
|
376 |
-
|
377 |
-
with gr.Row():
|
378 |
-
user_id = gr.Textbox(label= "Your user id")
|
379 |
-
search_btn = gr.Button("Search my models π")
|
380 |
-
reset_btn = gr.Button("Clear my search")
|
381 |
-
env = gr.Variable(rl_env["rl_env"])
|
382 |
-
grpath = gr.Variable(path_)
|
383 |
-
with gr.Row():
|
384 |
-
gr_dataframe = gr.components.Dataframe(value=get_data(rl_env["rl_env"], path_), headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], row_count=(100, 'fixed'))
|
385 |
-
|
386 |
-
with gr.Row():
|
387 |
-
#gr_search_dataframe = gr.components.Dataframe(headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], visible=False)
|
388 |
-
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data")
|
389 |
|
390 |
with gr.Row():
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
],
|
400 |
-
)
|
401 |
-
"""
|
402 |
-
|
403 |
-
|
404 |
-
scheduler = BackgroundScheduler()
|
405 |
-
# Refresh every hour
|
406 |
-
#scheduler.add_job(func=run_update_dataset, trigger="interval", seconds=3600)
|
407 |
-
#scheduler.add_job(download_leaderboard_dataset, 'interval', seconds=3600)
|
408 |
-
#scheduler.add_job(run_update_dataset, 'interval', seconds=3600)
|
409 |
-
scheduler.add_job(restart, 'interval', seconds=10800)
|
410 |
-
scheduler.start()
|
411 |
|
412 |
block.launch()
|
|
|
30 |
{
|
31 |
"rl_env_beautiful": "CartPole-v1",
|
32 |
"rl_env": "CartPole-v1",
|
33 |
+
"video_link": "",
|
34 |
"global": None
|
35 |
},
|
36 |
{
|
|
|
149 |
}
|
150 |
]
|
151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
def download_leaderboard_dataset():
|
154 |
+
# Download the dataset from the Hugging Face Hub
|
155 |
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
156 |
return path
|
157 |
|
158 |
+
|
159 |
def get_data(rl_env, path) -> pd.DataFrame:
|
160 |
"""
|
161 |
+
Get data from rl_env CSV file and return as DataFrame
|
|
|
162 |
"""
|
163 |
+
csv_path = os.path.join(path, rl_env + ".csv")
|
164 |
data = pd.read_csv(csv_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
return data
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
with block:
|
169 |
+
gr.Markdown("""
|
170 |
+
# π Deep Reinforcement Learning Course Leaderboard π
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
Presenting the latest leaderboard from the Hugging Face Deep RL Course.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
""")
|
174 |
+
|
175 |
path_ = download_leaderboard_dataset()
|
176 |
|
177 |
for i in range(0, len(rl_envs)):
|
178 |
rl_env = rl_envs[i]
|
179 |
+
with gr.TabItem(rl_env["rl_env_beautiful"]):
|
180 |
with gr.Row():
|
181 |
+
markdown = f"""
|
182 |
+
# {rl_env['rl_env_beautiful']}
|
183 |
|
184 |
+
### Leaderboard for {rl_env['rl_env_beautiful']}
|
185 |
+
"""
|
186 |
gr.Markdown(markdown)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
with gr.Row():
|
189 |
+
# Display the data for this RL environment
|
190 |
+
data = get_data(rl_env["rl_env"], path_)
|
191 |
+
gr.Dataframe(
|
192 |
+
value=data,
|
193 |
+
headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"],
|
194 |
+
datatype=["number", "markdown", "markdown", "number", "number", "number"],
|
195 |
+
row_count=(100, 'fixed')
|
196 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
block.launch()
|