Spaces:
Runtime error
Runtime error
File size: 6,535 Bytes
3790b84 4370c42 3790b84 921251d 3790b84 921251d 3790b84 4370c42 3790b84 772bf7d 3790b84 4370c42 772bf7d 3790b84 cc624e3 3790b84 cc624e3 3790b84 ff7b553 3790b84 921251d 3790b84 772bf7d 3790b84 921251d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import json
import requests
import datetime
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from tqdm.contrib.concurrent import thread_map
from apscheduler.schedulers.background import BackgroundScheduler
DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
block = gr.Blocks()
# Read the environments from the JSON file
with open('envs.json', 'r') as f:
rl_envs = json.load(f)
def download_leaderboard_dataset():
# Download the dataset from the Hugging Face Hub
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
return path
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
return metadata_load(readme_path)
except requests.exceptions.HTTPError:
# 404 README.md not found
return None
def parse_metrics_accuracy(meta):
if "model-index" not in meta:
return None
result = meta["model-index"][0]["results"]
metrics = result[0]["metrics"]
accuracy = metrics[0]["value"]
return accuracy
# We keep the worst case episode
def parse_rewards(accuracy):
default_std = -1000
default_reward = -1000
if accuracy is not None:
accuracy = str(accuracy)
parsed = accuracy.split('+/-')
if len(parsed) > 1:
mean_reward = float(parsed[0].strip())
std_reward = float(parsed[1].strip())
elif len(parsed) == 1: # only mean reward
mean_reward = float(parsed[0].strip())
std_reward = float(0)
else:
mean_reward = float(default_std)
std_reward = float(default_reward)
else:
mean_reward = float(default_std)
std_reward = float(default_reward)
return mean_reward, std_reward
def get_model_ids(rl_env):
api = HfApi()
models = api.list_models(filter=rl_env)
model_ids = [x.modelId for x in models]
return model_ids
def store_last_update_time(path):
# Get the current time
current_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# Create a file to store the last update time
last_update_file = os.path.join(path, "last_update.txt")
with open(last_update_file, 'w') as f:
f.write(f"Last update time: {current_time}")
print(f"Stored last update time: {current_time}")
# Parralelized version
def update_leaderboard_dataset_parallel(rl_env, path):
# Get model ids associated with rl_env
model_ids = get_model_ids(rl_env)
def process_model(model_id):
meta = get_metadata(model_id)
if meta is None:
return None
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
std_reward = std_reward if not pd.isna(std_reward) else 0
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
return row
# Process models with index tracking
data = list(thread_map(process_model, model_ids, desc="Processing models"))
# Filter out None results (models with no metadata)
data = [row for row in data if row is not None]
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
new_history = ranked_dataframe
file_path = path + "/" + rl_env + ".csv"
new_history.to_csv(file_path, index=False)
return ranked_dataframe
def update_leaderboard_dataset(rl_env, path):
# Get model ids associated with rl_env
model_ids = get_model_ids(rl_env)
data = []
for model_id in model_ids:
"""
readme_path = hf_hub_download(model_id, filename="README.md")
meta = metadata_load(readme_path)
"""
meta = get_metadata(model_id)
# LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
if meta is None:
continue
user_id = model_id.split('/')[0]
row = {}
row["User"] = user_id
row["Model"] = model_id
accuracy = parse_metrics_accuracy(meta)
mean_reward, std_reward = parse_rewards(accuracy)
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
std_reward = std_reward if not pd.isna(std_reward) else 0
row["Results"] = mean_reward - std_reward
row["Mean Reward"] = mean_reward
row["Std Reward"] = std_reward
data.append(row)
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
new_history = ranked_dataframe
file_path = path + "/" + rl_env + ".csv"
new_history.to_csv(file_path, index=False)
return ranked_dataframe
def get_data_no_html(rl_env, path) -> pd.DataFrame:
"""
Get data from rl_env
:return: data as a pandas DataFrame
"""
csv_path = path + "/" + rl_env + ".csv"
data = pd.read_csv(csv_path)
return data
def rank_dataframe(dataframe):
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
if 'Ranking' not in dataframe.columns:
dataframe.insert(0, 'Ranking', [i for i in range(1, len(dataframe) + 1)])
else:
dataframe['Ranking'] = [i for i in range(1, len(dataframe) + 1)]
return dataframe
def run_update_dataset():
path_ = download_leaderboard_dataset()
envs_length = len(rl_envs)
for i in range(0, len(rl_envs)):
rl_env = rl_envs[i]
print(f"Updating leaderboard for {rl_env['rl_env']} ({i + 1}/{envs_length})")
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
store_last_update_time(path_)
api.upload_folder(
folder_path=path_,
repo_id="pkalkman/drlc-leaderboard-data",
repo_type="dataset",
commit_message="Update dataset")
# run at startup
run_update_dataset()
scheduler = BackgroundScheduler()
scheduler.add_job(run_update_dataset, 'interval', seconds=3600 * 2)
scheduler.start()
with block:
gr.Markdown("""
# π Deep Reinforcement Learning Course Leaderboard Updater
The process to update the leaderboard is running in the background.
""")
block.launch()
|