File size: 6,535 Bytes
3790b84
 
 
4370c42
3790b84
 
921251d
3790b84
 
 
 
 
 
 
 
 
 
 
921251d
3790b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4370c42
 
 
 
 
 
 
 
 
 
 
 
3790b84
 
 
 
 
772bf7d
3790b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4370c42
772bf7d
3790b84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc624e3
3790b84
 
cc624e3
3790b84
 
ff7b553
3790b84
 
 
 
 
 
 
921251d
 
 
3790b84
772bf7d
3790b84
921251d
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import json
import requests
import datetime

import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from huggingface_hub.repocard import metadata_load
from tqdm.contrib.concurrent import thread_map
from apscheduler.schedulers.background import BackgroundScheduler


DATASET_REPO_URL = "https://huggingface.co/datasets/pkalkman/drlc-leaderboard-data"
DATASET_REPO_ID = "pkalkman/drlc-leaderboard-data"
HF_TOKEN = os.environ.get("HF_TOKEN")

api = HfApi(token=HF_TOKEN)
block = gr.Blocks()

# Read the environments from the JSON file
with open('envs.json', 'r') as f:
    rl_envs = json.load(f)


def download_leaderboard_dataset():
    # Download the dataset from the Hugging Face Hub
    path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
    return path


def get_metadata(model_id):
    try:
        readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
        return metadata_load(readme_path)
    except requests.exceptions.HTTPError:
        # 404 README.md not found
        return None


def parse_metrics_accuracy(meta):
    if "model-index" not in meta:
        return None
    result = meta["model-index"][0]["results"]
    metrics = result[0]["metrics"]
    accuracy = metrics[0]["value"]
    return accuracy


# We keep the worst case episode
def parse_rewards(accuracy):
    default_std = -1000
    default_reward = -1000
    if accuracy is not None:
        accuracy = str(accuracy)
        parsed = accuracy.split('+/-')
        if len(parsed) > 1:
            mean_reward = float(parsed[0].strip())
            std_reward = float(parsed[1].strip())
        elif len(parsed) == 1:  # only mean reward
            mean_reward = float(parsed[0].strip())
            std_reward = float(0)
        else:
            mean_reward = float(default_std)
            std_reward = float(default_reward)

    else:
        mean_reward = float(default_std)
        std_reward = float(default_reward)
    return mean_reward, std_reward


def get_model_ids(rl_env):
    api = HfApi()
    models = api.list_models(filter=rl_env)
    model_ids = [x.modelId for x in models]
    return model_ids


def store_last_update_time(path):
    # Get the current time
    current_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')

    # Create a file to store the last update time
    last_update_file = os.path.join(path, "last_update.txt")
    with open(last_update_file, 'w') as f:
        f.write(f"Last update time: {current_time}")

    print(f"Stored last update time: {current_time}")


# Parralelized version
def update_leaderboard_dataset_parallel(rl_env, path):
    # Get model ids associated with rl_env
    model_ids = get_model_ids(rl_env)

    def process_model(model_id):
        meta = get_metadata(model_id)
        if meta is None:
            return None
        user_id = model_id.split('/')[0]
        row = {}
        row["User"] = user_id
        row["Model"] = model_id
        accuracy = parse_metrics_accuracy(meta)
        mean_reward, std_reward = parse_rewards(accuracy)
        mean_reward = mean_reward if not pd.isna(mean_reward) else 0
        std_reward = std_reward if not pd.isna(std_reward) else 0
        row["Results"] = mean_reward - std_reward
        row["Mean Reward"] = mean_reward
        row["Std Reward"] = std_reward
        return row

    # Process models with index tracking
    data = list(thread_map(process_model, model_ids, desc="Processing models"))

    # Filter out None results (models with no metadata)
    data = [row for row in data if row is not None]

    ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    new_history = ranked_dataframe
    file_path = path + "/" + rl_env + ".csv"
    new_history.to_csv(file_path, index=False)

    return ranked_dataframe


def update_leaderboard_dataset(rl_env, path):
    # Get model ids associated with rl_env
    model_ids = get_model_ids(rl_env)
    data = []
    for model_id in model_ids:
        """
        readme_path = hf_hub_download(model_id, filename="README.md")
        meta = metadata_load(readme_path)
        """
        meta = get_metadata(model_id)
        # LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
        if meta is None:
            continue
        user_id = model_id.split('/')[0]
        row = {}
        row["User"] = user_id
        row["Model"] = model_id
        accuracy = parse_metrics_accuracy(meta)
        mean_reward, std_reward = parse_rewards(accuracy)
        mean_reward = mean_reward if not pd.isna(mean_reward) else 0
        std_reward = std_reward if not pd.isna(std_reward) else 0
        row["Results"] = mean_reward - std_reward
        row["Mean Reward"] = mean_reward
        row["Std Reward"] = std_reward
        data.append(row)

    ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
    new_history = ranked_dataframe
    file_path = path + "/" + rl_env + ".csv"
    new_history.to_csv(file_path, index=False)

    return ranked_dataframe


def get_data_no_html(rl_env, path) -> pd.DataFrame:
    """
    Get data from rl_env
    :return: data as a pandas DataFrame
    """
    csv_path = path + "/" + rl_env + ".csv"
    data = pd.read_csv(csv_path)

    return data


def rank_dataframe(dataframe):
    dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
    if 'Ranking' not in dataframe.columns:
        dataframe.insert(0, 'Ranking', [i for i in range(1, len(dataframe) + 1)])
    else:
        dataframe['Ranking'] = [i for i in range(1, len(dataframe) + 1)]
    return dataframe


def run_update_dataset():
    path_ = download_leaderboard_dataset()
    envs_length = len(rl_envs)
    for i in range(0, len(rl_envs)):
        rl_env = rl_envs[i]
        print(f"Updating leaderboard for {rl_env['rl_env']} ({i + 1}/{envs_length})")
        update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)

    store_last_update_time(path_)
    api.upload_folder(
        folder_path=path_,
        repo_id="pkalkman/drlc-leaderboard-data",
        repo_type="dataset",
        commit_message="Update dataset")


# run at startup
run_update_dataset()

scheduler = BackgroundScheduler()
scheduler.add_job(run_update_dataset, 'interval', seconds=3600 * 2)
scheduler.start()

with block:
    gr.Markdown("""
    # πŸ† Deep Reinforcement Learning Course Leaderboard Updater 

    The process to update the leaderboard is running in the background.
    """)

block.launch()