|
|
|
from os import write |
|
import time |
|
import pandas as pd |
|
import base64 |
|
from typing import Sequence |
|
import streamlit as st |
|
from sklearn.metrics import classification_report |
|
|
|
|
|
|
|
import models as md |
|
from utils import plot_result, plot_dual_bar_chart, examples_load, example_long_text_load |
|
import json |
|
|
|
ex_text, ex_license, ex_labels, ex_glabels = examples_load() |
|
ex_long_text = example_long_text_load() |
|
|
|
|
|
|
|
st.markdown("### Long Text Summarization & Multi-Label Classification") |
|
st.write("This app summarizes and then classifies your long text(s) with multiple labels using [BART Large MNLI](https://huggingface.co/facebook/bart-large-mnli). The keywords are generated using [KeyBERT](https://github.com/MaartenGr/KeyBERT).") |
|
st.write("__Inputs__: User enters their own custom text(s) and labels.") |
|
st.write("__Outputs__: A summary of the text, likelihood percentages for each label and a downloadable csv of the results. \ |
|
Includes additional options to generate a list of keywords and/or evaluate results against a list of ground truth labels, if available.") |
|
|
|
example_button = st.button(label='See Example') |
|
if example_button: |
|
example_text = ex_long_text |
|
display_text = 'Excerpt from Frankenstein:' + example_text + '"\n\n' + "[This is an excerpt from Project Gutenberg's Frankenstein. " + ex_license + "]" |
|
input_labels = ex_labels |
|
input_glabels = ex_glabels |
|
else: |
|
display_text = '' |
|
input_labels = '' |
|
input_glabels = '' |
|
|
|
|
|
with st.form(key='my_form'): |
|
st.markdown("##### Step 1: Upload Text") |
|
text_input = st.text_area("Input any text you want to summarize & classify here (keep in mind very long text will take a while to process):", display_text) |
|
|
|
text_csv_expander = st.expander(label=f'Want to upload multiple texts at once? Expand to upload your text files below.', expanded=False) |
|
with text_csv_expander: |
|
st.markdown('##### Choose one of the options below:') |
|
st.write("__Option A:__") |
|
uploaded_text_files = st.file_uploader(label="Upload file(s) that end with the .txt suffix", |
|
accept_multiple_files=True, key = 'text_uploader', |
|
type = 'txt') |
|
st.write("__Option B:__") |
|
uploaded_csv_text_files = st.file_uploader(label='Upload a CSV file with columns: "title" and "text"', |
|
accept_multiple_files=False, key = 'csv_text_uploader', |
|
type = 'csv') |
|
|
|
if text_input == display_text and display_text != '': |
|
text_input = example_text |
|
|
|
|
|
st.text("\n\n\n") |
|
st.markdown("##### Step 2: Enter Labels") |
|
labels = st.text_input('Enter possible topic labels, which can be either keywords and/or general themes (comma-separated):',input_labels, max_chars=2000) |
|
labels = list(set([x.strip() for x in labels.strip().split(',') if len(x.strip()) > 0])) |
|
|
|
labels_csv_expander = st.expander(label=f'Prefer to upload a list of labels instead? Click here to upload your CSV file.',expanded=False) |
|
with labels_csv_expander: |
|
uploaded_labels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label", |
|
key='labels_uploader') |
|
|
|
gen_keywords = st.radio( |
|
"Generate keywords from text (independent from the above labels)?", |
|
('Yes', 'No') |
|
) |
|
|
|
st.text("\n\n\n") |
|
st.markdown("##### Step 3: Provide Ground Truth Labels (_Optional_)") |
|
glabels = st.text_input('If available, enter ground truth topic labels to evaluate results, otherwise leave blank (comma-separated):',input_glabels, max_chars=2000) |
|
glabels = list(set([x.strip() for x in glabels.strip().split(',') if len(x.strip()) > 0])) |
|
|
|
|
|
glabels_csv_expander = st.expander(label=f'Have a file with labels for the text? Click here to upload your CSV file.', expanded=False) |
|
with glabels_csv_expander: |
|
st.markdown('##### Choose one of the options below:') |
|
st.write("__Option A:__") |
|
uploaded_onetext_glabels_file = st.file_uploader("Choose a CSV file with one column and no header, where each cell is a separate label", |
|
key = 'onetext_glabels_uploader') |
|
st.write("__Option B:__") |
|
uploaded_multitext_glabels_file = st.file_uploader('Or Choose a CSV file with two columns "title" and "label", with the cells in the title column matching the name of the files uploaded in step #1.', |
|
key = 'multitext_glabels_uploader') |
|
|
|
|
|
|
|
threshold_value = st.slider( |
|
'Select a threshold cutoff for matching percentage (used for ground truth label evaluation)', |
|
0.0, 1.0, (0.5)) |
|
|
|
submit_button = st.form_submit_button(label='Submit') |
|
|
|
st.write("_For improvments/suggestions, please file an issue here: https://github.com/pleonova/multi-label-summary-text_") |
|
|
|
with st.spinner('Loading pretrained models...'): |
|
start = time.time() |
|
summarizer = md.load_summary_model() |
|
s_time = round(time.time() - start,4) |
|
|
|
start = time.time() |
|
classifier = md.load_model() |
|
c_time = round(time.time() - start,4) |
|
|
|
start = time.time() |
|
kw_model = md.load_keyword_model() |
|
k_time = round(time.time() - start,4) |
|
|
|
st.spinner(f'Time taken to load various models: {k_time}s for KeyBERT model & {s_time}s for BART summarizer mnli model & {c_time}s for BART classifier mnli model.') |
|
|
|
|
|
if submit_button or example_button: |
|
if len(text_input) == 0 and uploaded_text_files is None and uploaded_csv_text_files is None: |
|
st.error("Enter some text to generate a summary") |
|
else: |
|
|
|
if len(text_input) != 0: |
|
text_df = pd.DataFrame.from_dict({'title': ['sample'], 'text': [text_input]}) |
|
|
|
|
|
elif uploaded_text_files is not None: |
|
st.markdown("### Text Inputs") |
|
st.write('Files concatenated into a dataframe:') |
|
file_names = [] |
|
raw_texts = [] |
|
for uploaded_file in uploaded_text_files: |
|
text = str(uploaded_file.read(), "utf-8") |
|
raw_texts.append(text) |
|
title_file_name = uploaded_file.name.replace('.txt','') |
|
file_names.append(title_file_name) |
|
text_df = pd.DataFrame({'title': file_names, |
|
'text': raw_texts}) |
|
st.dataframe(text_df.head()) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=text_df.to_csv().encode('utf-8'), |
|
file_name='title_text.csv', |
|
mime='title_text/csv', |
|
) |
|
|
|
|
|
|
|
if len(text_input) != 0: |
|
text_df = pd.DataFrame.from_dict({'title': ['sample'], 'text': [text_input]}) |
|
|
|
|
|
with st.spinner('Breaking up text into more reasonable chunks (transformers cannot exceed a 1024 token max)...'): |
|
|
|
|
|
text_chunks_lib = dict() |
|
for i in range(0, len(text_df)): |
|
nested_sentences = md.create_nest_sentences(document=text_df['text'][i], token_max_length=1024) |
|
|
|
|
|
text_chunks = [] |
|
for n in range(0, len(nested_sentences)): |
|
tc = " ".join(map(str, nested_sentences[n])) |
|
text_chunks.append(tc) |
|
title_entry = text_df['title'][i] |
|
text_chunks_lib[title_entry] = text_chunks |
|
|
|
if gen_keywords == 'Yes': |
|
st.markdown("### Top Keywords") |
|
with st.spinner("Generating keywords from text..."): |
|
|
|
kw_dict = dict() |
|
text_chunk_counter = 0 |
|
for key in text_chunks_lib: |
|
keywords_list = [] |
|
for text_chunk in text_chunks_lib[key]: |
|
text_chunk_counter += 1 |
|
keywords_list += md.keyword_gen(kw_model, text_chunk) |
|
kw_dict[key] = dict(keywords_list) |
|
|
|
kw_df0 = pd.DataFrame.from_dict(kw_dict).reset_index() |
|
kw_df0.rename(columns={'index': 'keyword'}, inplace=True) |
|
kw_df = pd.melt(kw_df0, id_vars=['keyword'], var_name='title', value_name='score').dropna() |
|
if len(text_input) != 0: |
|
title_element = [] |
|
else: |
|
title_element = ['title'] |
|
kw_column_list = ['keyword', 'score'] |
|
kw_df = kw_df[kw_df['score'] > 0.25][title_element + kw_column_list].sort_values(title_element + ['score'], ascending=False).reset_index().drop(columns='index') |
|
st.dataframe(kw_df) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=kw_df.to_csv().encode('utf-8'), |
|
file_name='title_keywords.csv', |
|
mime='title_keywords/csv', |
|
) |
|
|
|
|
|
st.markdown("### Summary") |
|
with st.spinner(f'Generating summaries for {text_chunk_counter} text chunks (this may take a minute)...'): |
|
|
|
my_summary_expander = st.expander(label=f'Expand to see intermediate summary generation details for {len(text_chunks)} text chunks') |
|
with my_summary_expander: |
|
summary = [] |
|
|
|
st.markdown("_Once the original text is broken into smaller chunks (totaling no more than 1024 tokens, \ |
|
with complete sentences), each block of text is then summarized separately using BART NLI \ |
|
and then combined at the very end to generate the final summary._") |
|
|
|
for num_chunk, text_chunk in enumerate(text_chunks): |
|
st.markdown(f"###### Original Text Chunk {num_chunk+1}/{len(text_chunks)}" ) |
|
st.markdown(text_chunk) |
|
|
|
chunk_summary = md.summarizer_gen(summarizer, sequence=text_chunk, maximum_tokens = 300, minimum_tokens = 20) |
|
summary.append(chunk_summary) |
|
st.markdown(f"###### Partial Summary {num_chunk+1}/{len(text_chunks)}") |
|
st.markdown(chunk_summary) |
|
|
|
final_summary = " \n\n".join(list(summary)) |
|
|
|
st.markdown(final_summary) |
|
|
|
if len(text_input) == 0 or len(labels) == 0: |
|
st.error('Enter some text and at least one possible topic to see label predictions.') |
|
else: |
|
st.markdown("### Top Label Predictions on Summary vs Full Text") |
|
with st.spinner('Matching labels...'): |
|
topics, scores = md.classifier_zero(classifier, sequence=final_summary, labels=labels, multi_class=True) |
|
|
|
|
|
|
|
data = pd.DataFrame({'label': topics, 'scores_from_summary': scores}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
topics_ex_text, scores_ex_text = md.classifier_zero(classifier, sequence=text_input, labels=labels, multi_class=True) |
|
plot_dual_bar_chart(topics, scores, topics_ex_text, scores_ex_text) |
|
|
|
data_ex_text = pd.DataFrame({'label': topics_ex_text, 'scores_from_full_text': scores_ex_text}) |
|
|
|
data2 = pd.merge(data, data_ex_text, on = ['label']) |
|
|
|
if len(glabels) > 0: |
|
gdata = pd.DataFrame({'label': glabels}) |
|
gdata['is_true_label'] = int(1) |
|
|
|
data2 = pd.merge(data2, gdata, how = 'left', on = ['label']) |
|
data2['is_true_label'].fillna(0, inplace = True) |
|
|
|
st.markdown("### Data Table") |
|
with st.spinner('Generating a table of results and a download link...'): |
|
st.dataframe(data2) |
|
|
|
@st.cache |
|
def convert_df(df): |
|
|
|
return df.to_csv().encode('utf-8') |
|
csv = convert_df(data2) |
|
st.download_button( |
|
label="Download data as CSV", |
|
data=csv, |
|
file_name='text_labels.csv', |
|
mime='text/csv', |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(glabels) > 0: |
|
st.markdown("### Evaluation Metrics") |
|
with st.spinner('Evaluating output against ground truth...'): |
|
|
|
section_header_description = ['Summary Label Performance', 'Original Full Text Label Performance'] |
|
data_headers = ['scores_from_summary', 'scores_from_full_text'] |
|
for i in range(0,2): |
|
st.markdown(f"###### {section_header_description[i]}") |
|
report = classification_report(y_true = data2[['is_true_label']], |
|
y_pred = (data2[[data_headers[i]]] >= threshold_value) * 1.0, |
|
output_dict=True) |
|
df_report = pd.DataFrame(report).transpose() |
|
st.markdown(f"Threshold set for: {threshold_value}") |
|
st.dataframe(df_report) |
|
|
|
st.success('All done!') |
|
st.balloons() |
|
|