gcli2api / src /openai_routes.py
bibibi12345's picture
added error logging and handling
8061397
"""
OpenAI API Routes - Handles OpenAI-compatible endpoints.
This module provides OpenAI-compatible endpoints that transform requests/responses
and delegate to the Google API client.
"""
import json
import uuid
import asyncio
import logging
from fastapi import APIRouter, Request, Response, Depends
from fastapi.responses import StreamingResponse
from .auth import authenticate_user
from .models import OpenAIChatCompletionRequest
from .openai_transformers import (
openai_request_to_gemini,
gemini_response_to_openai,
gemini_stream_chunk_to_openai
)
from .google_api_client import send_gemini_request, build_gemini_payload_from_openai
router = APIRouter()
@router.post("/v1/chat/completions")
async def openai_chat_completions(
request: OpenAIChatCompletionRequest,
http_request: Request,
username: str = Depends(authenticate_user)
):
"""
OpenAI-compatible chat completions endpoint.
Transforms OpenAI requests to Gemini format, sends to Google API,
and transforms responses back to OpenAI format.
"""
try:
logging.info(f"OpenAI chat completion request: model={request.model}, stream={request.stream}")
# Transform OpenAI request to Gemini format
gemini_request_data = openai_request_to_gemini(request)
# Build the payload for Google API
gemini_payload = build_gemini_payload_from_openai(gemini_request_data)
except Exception as e:
logging.error(f"Error processing OpenAI request: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Request processing failed: {str(e)}",
"type": "invalid_request_error",
"code": 400
}
}),
status_code=400,
media_type="application/json"
)
if request.stream:
# Handle streaming response
async def openai_stream_generator():
try:
response = send_gemini_request(gemini_payload, is_streaming=True)
if isinstance(response, StreamingResponse):
response_id = "chatcmpl-" + str(uuid.uuid4())
logging.info(f"Starting streaming response: {response_id}")
async for chunk in response.body_iterator:
if isinstance(chunk, bytes):
chunk = chunk.decode('utf-8')
if chunk.startswith('data: '):
try:
# Parse the Gemini streaming chunk
chunk_data = chunk[6:] # Remove 'data: ' prefix
gemini_chunk = json.loads(chunk_data)
# Check if this is an error chunk
if "error" in gemini_chunk:
logging.error(f"Error in streaming response: {gemini_chunk['error']}")
# Transform error to OpenAI format
error_data = {
"error": {
"message": gemini_chunk["error"].get("message", "Unknown error"),
"type": gemini_chunk["error"].get("type", "api_error"),
"code": gemini_chunk["error"].get("code")
}
}
yield f"data: {json.dumps(error_data)}\n\n"
yield "data: [DONE]\n\n"
return
# Transform to OpenAI format
openai_chunk = gemini_stream_chunk_to_openai(
gemini_chunk,
request.model,
response_id
)
# Send as OpenAI streaming format
yield f"data: {json.dumps(openai_chunk)}\n\n"
await asyncio.sleep(0)
except (json.JSONDecodeError, KeyError, UnicodeDecodeError) as e:
logging.warning(f"Failed to parse streaming chunk: {str(e)}")
continue
# Send the final [DONE] marker
yield "data: [DONE]\n\n"
logging.info(f"Completed streaming response: {response_id}")
else:
# Error case - handle Response object with error
error_msg = "Streaming request failed"
status_code = 500
if hasattr(response, 'status_code'):
status_code = response.status_code
error_msg += f" (status: {status_code})"
if hasattr(response, 'body'):
try:
# Try to parse error response
error_body = response.body
if isinstance(error_body, bytes):
error_body = error_body.decode('utf-8')
error_data = json.loads(error_body)
if "error" in error_data:
error_msg = error_data["error"].get("message", error_msg)
except:
pass
logging.error(f"Streaming request failed: {error_msg}")
error_data = {
"error": {
"message": error_msg,
"type": "invalid_request_error" if status_code == 404 else "api_error",
"code": status_code
}
}
yield f"data: {json.dumps(error_data)}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logging.error(f"Streaming error: {str(e)}")
error_data = {
"error": {
"message": f"Streaming failed: {str(e)}",
"type": "api_error",
"code": 500
}
}
yield f"data: {json.dumps(error_data)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
openai_stream_generator(),
media_type="text/event-stream"
)
else:
# Handle non-streaming response
try:
response = send_gemini_request(gemini_payload, is_streaming=False)
if isinstance(response, Response) and response.status_code != 200:
# Handle error responses from Google API
logging.error(f"Gemini API error: status={response.status_code}")
try:
# Try to parse the error response and transform to OpenAI format
error_body = response.body
if isinstance(error_body, bytes):
error_body = error_body.decode('utf-8')
error_data = json.loads(error_body)
if "error" in error_data:
# Transform Google API error to OpenAI format
openai_error = {
"error": {
"message": error_data["error"].get("message", f"API error: {response.status_code}"),
"type": error_data["error"].get("type", "invalid_request_error" if response.status_code == 404 else "api_error"),
"code": error_data["error"].get("code", response.status_code)
}
}
return Response(
content=json.dumps(openai_error),
status_code=response.status_code,
media_type="application/json"
)
except (json.JSONDecodeError, UnicodeDecodeError):
pass
# Fallback error response
return Response(
content=json.dumps({
"error": {
"message": f"API error: {response.status_code}",
"type": "invalid_request_error" if response.status_code == 404 else "api_error",
"code": response.status_code
}
}),
status_code=response.status_code,
media_type="application/json"
)
try:
# Parse Gemini response and transform to OpenAI format
gemini_response = json.loads(response.body)
openai_response = gemini_response_to_openai(gemini_response, request.model)
logging.info(f"Successfully processed non-streaming response for model: {request.model}")
return openai_response
except (json.JSONDecodeError, AttributeError) as e:
logging.error(f"Failed to parse Gemini response: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Failed to process response: {str(e)}",
"type": "api_error",
"code": 500
}
}),
status_code=500,
media_type="application/json"
)
except Exception as e:
logging.error(f"Non-streaming request failed: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Request failed: {str(e)}",
"type": "api_error",
"code": 500
}
}),
status_code=500,
media_type="application/json"
)
@router.get("/v1/models")
async def openai_list_models(username: str = Depends(authenticate_user)):
"""
OpenAI-compatible models endpoint.
Returns available models in OpenAI format.
"""
try:
logging.info("OpenAI models list requested")
# Convert our Gemini models to OpenAI format
from .config import SUPPORTED_MODELS
openai_models = []
for model in SUPPORTED_MODELS:
# Remove "models/" prefix for OpenAI compatibility
model_id = model["name"].replace("models/", "")
openai_models.append({
"id": model_id,
"object": "model",
"created": 1677610602, # Static timestamp
"owned_by": "google",
"permission": [
{
"id": "modelperm-" + model_id.replace("/", "-"),
"object": "model_permission",
"created": 1677610602,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": False,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False
}
],
"root": model_id,
"parent": None
})
logging.info(f"Returning {len(openai_models)} models")
return {
"object": "list",
"data": openai_models
}
except Exception as e:
logging.error(f"Failed to list models: {str(e)}")
return Response(
content=json.dumps({
"error": {
"message": f"Failed to list models: {str(e)}",
"type": "api_error",
"code": 500
}
}),
status_code=500,
media_type="application/json"
)