potsawee's picture
Upload app.py with huggingface_hub
f73992a verified
#!/usr/bin/env python3
"""
HuggingFace Space Demo for TextSyncMimi
Speech Editing with Token-Level Embedding Swapping
This demo loads the model from HuggingFace Hub and allows:
- Generating speech with different voices using OpenAI TTS
- Swapping speech embeddings at specific token positions
- Real-time speech editing
Prerequisites:
- Set OPENAI_API_KEY in Space secrets
- Model will be loaded from HuggingFace Hub
"""
import os
import json
import tempfile
import argparse
from typing import List, Tuple, Optional
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import soundfile as sf
import gradio as gr
from openai import OpenAI
from transformers import (
AutoModel,
AutoFeatureExtractor,
AutoTokenizer,
MimiModel,
)
# Import spaces for GPU support
try:
import spaces
GPU_AVAILABLE = True
except ImportError:
GPU_AVAILABLE = False
# Create dummy decorator if spaces not available
class spaces:
@staticmethod
def GPU(func):
return func
# Constants
SAMPLE_RATE = 24000
FRAME_RATE = 12.5
TTS_VOICES = ["alloy", "ash", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer", "verse"]
MAX_Z_TOKENS = 50
END_TOKEN_THRESHOLD = 0.5
# Global variables
model = None
mimi_model = None
tokenizer = None
feature_extractor = None
device = None
openai_client = None
def load_audio_to_inputs(feature_extractor, audio_path: str, sample_rate: int) -> torch.Tensor:
"""Load audio file and convert to model inputs."""
import librosa
audio, sr = librosa.load(audio_path, sr=sample_rate, mono=True)
audio_inputs = feature_extractor(raw_audio=audio, return_tensors="pt", sampling_rate=sample_rate)
return audio_inputs.input_values
def initialize_models(model_id: str, tokenizer_id: str = "meta-llama/Llama-3.1-8B-Instruct", hf_token: Optional[str] = None):
"""Initialize all models from HuggingFace Hub."""
global model, mimi_model, tokenizer, feature_extractor, device, openai_client
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print(f"Loading TextSyncMimi model from {model_id}...")
model = AutoModel.from_pretrained(
model_id,
trust_remote_code=True,
token=hf_token
)
model.to(device)
model.eval()
# Get mimi_model_id from config
mimi_model_id = model.config.mimi_model_id if hasattr(model.config, 'mimi_model_id') else "kyutai/mimi"
print("Loading Mimi model...")
mimi_model = MimiModel.from_pretrained(mimi_model_id, token=hf_token)
mimi_model.to(device)
mimi_model.eval()
print(f"Loading tokenizer from {tokenizer_id}...")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, token=hf_token)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading feature extractor...")
feature_extractor = AutoFeatureExtractor.from_pretrained(mimi_model_id, token=hf_token)
print("Initializing OpenAI client...")
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
print("βœ… All models loaded successfully!")
@torch.no_grad()
def compute_cross_attention_s(
model,
text_embeddings: torch.Tensor,
input_values: torch.Tensor,
device: str
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute projected text embeddings and cross-attended speech embeddings."""
audio_attention_mask = torch.ones(1, input_values.shape[-1], dtype=torch.bool, device=device)
text_attention_mask = torch.ones(1, text_embeddings.shape[1], dtype=torch.bool, device=device)
# Encode speech
speech_embeddings = model.encode_audio_to_representation(
input_values.to(device),
audio_attention_mask=audio_attention_mask,
).transpose(1, 2)
# Project text
text_proj = model.text_proj(text_embeddings.to(device))
# Build attention masks
batch_size, text_seq_len = text_proj.shape[:2]
causal_mask = torch.tril(torch.ones(text_seq_len, text_seq_len, device=device, dtype=text_proj.dtype))
causal_mask = causal_mask.view(1, 1, text_seq_len, text_seq_len).expand(batch_size, -1, -1, -1)
pad_mask = text_attention_mask.view(batch_size, 1, 1, text_seq_len)
formatted_text_attention_mask = torch.where((causal_mask * pad_mask).bool(), 0.0, float("-inf"))
speech_seq_len = speech_embeddings.shape[1]
speech_mask = torch.ones(batch_size, speech_seq_len, dtype=torch.bool, device=device)
formatted_speech_attention_mask = torch.where(
speech_mask.view(batch_size, 1, 1, speech_seq_len), 0.0, float("-inf")
)
# Cross attention
cross_out = model.cross_attention_transformer(
hidden_states=text_proj,
encoder_hidden_states=speech_embeddings,
attention_mask=formatted_text_attention_mask,
encoder_attention_mask=formatted_speech_attention_mask,
alignment_chunk_sizes=None,
).last_hidden_state
return text_proj, cross_out, text_attention_mask
@torch.no_grad()
def ar_generate_and_decode(
model,
mimi_model,
text_proj: torch.Tensor,
s_tokens: torch.Tensor,
text_attention_mask: torch.Tensor,
max_z_tokens: int,
end_token_threshold: float,
device: str
) -> np.ndarray:
"""Generate audio autoregressively and decode to waveform."""
batch_size, text_seq_len = text_proj.shape[:2]
text_speech_latent_emb = model.text_speech_latent_embed(torch.zeros(1, dtype=torch.long, device=device))
time_speech_start_emb = model.time_speech_start_embed(torch.zeros(1, dtype=torch.long, device=device))
time_speech_end_emb = model.time_speech_end_embed(torch.zeros(1, dtype=torch.long, device=device))
generated_z_tokens: List[torch.Tensor] = []
for b in range(batch_size):
if text_attention_mask is not None:
valid_text_len = int(text_attention_mask[b].sum().item())
else:
valid_text_len = text_seq_len
sequence: List[torch.Tensor] = [text_speech_latent_emb]
for i in range(valid_text_len):
t_i = text_proj[b, i:i+1]
s_i = s_tokens[b, i:i+1]
sequence.extend([t_i, s_i])
sequence.append(time_speech_start_emb)
z_count = 0
while z_count < max_z_tokens:
current_sequence = torch.cat(sequence, dim=0).unsqueeze(0)
ar_attention_mask = torch.ones(1, current_sequence.shape[1], dtype=torch.bool, device=device)
ar_outputs = model.ar_transformer(
hidden_states=current_sequence,
attention_mask=ar_attention_mask,
)
last_prediction = ar_outputs.last_hidden_state[0, -1:, :]
end_token_logit = model.end_token_classifier(last_prediction).squeeze(-1)
end_token_prob = torch.sigmoid(end_token_logit).item()
if end_token_prob >= end_token_threshold:
break
sequence.append(last_prediction)
generated_z_tokens.append(last_prediction.squeeze(0))
z_count += 1
sequence.append(time_speech_end_emb)
# Decode z tokens to audio
if len(generated_z_tokens) == 0:
audio_tensor = torch.zeros(1, 1, 1000, device=device)
else:
z_tokens_batch = torch.stack(generated_z_tokens, dim=0).unsqueeze(0)
embeddings_bct = z_tokens_batch.transpose(1, 2)
embeddings_upsampled = mimi_model.upsample(embeddings_bct)
decoder_outputs = mimi_model.decoder_transformer(embeddings_upsampled.transpose(1, 2), return_dict=True)
embeddings_after_dec = decoder_outputs.last_hidden_state.transpose(1, 2)
audio_tensor = mimi_model.decoder(embeddings_after_dec)
audio_numpy = audio_tensor.squeeze().detach().cpu().numpy()
if np.isnan(audio_numpy).any() or np.isinf(audio_numpy).any():
audio_numpy = np.nan_to_num(audio_numpy)
if audio_numpy.ndim > 1:
audio_numpy = audio_numpy.flatten()
return audio_numpy
def generate_tts_audio(text: str, voice: str, instructions: str = None) -> str:
"""Generate TTS audio using OpenAI and return the file path."""
if not openai_client:
raise RuntimeError("OpenAI client not initialized")
if instructions and instructions.strip():
response = openai_client.audio.speech.create(
model="gpt-4o-mini-tts",
voice=voice,
input=text,
instructions=instructions.strip()
)
else:
response = openai_client.audio.speech.create(
model="tts-1",
voice=voice,
input=text
)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
response.stream_to_file(temp_file.name)
return temp_file.name
@spaces.GPU
def process_inputs(transcript_text: str, voice1: str, voice2: str, instructions1: str = "", instructions2: str = ""):
"""Process inputs and generate audio."""
if not all([model, mimi_model, tokenizer, feature_extractor, openai_client]):
return "Please initialize models first!", None, None, None, None, None, None, None
if not transcript_text.strip():
return "Please provide a transcript!", None, None, None, None, None, None, None
if not voice1 or not voice2:
return "Please select voices for both audio samples!", None, None, None, None, None, None, None
# Tokenize
tokens = tokenizer(transcript_text.strip(), return_tensors="pt", add_special_tokens=False)
text_token_ids_cpu = tokens.input_ids.squeeze(0).tolist()
text_token_strs = tokenizer.convert_ids_to_tokens(text_token_ids_cpu)
text_token_ids = tokens.input_ids.to(device)
token_display = ""
for i, tok in enumerate(text_token_strs):
token_display += f"Token {i}: {tok}\n"
# Generate TTS audio
print(f"Generating TTS audio with voice '{voice1}'...")
audio1_path = generate_tts_audio(transcript_text.strip(), voice1, instructions1)
print(f"Generating TTS audio with voice '{voice2}'...")
audio2_path = generate_tts_audio(transcript_text.strip(), voice2, instructions2)
# Load audio
input_values_utt1 = load_audio_to_inputs(feature_extractor, audio1_path, SAMPLE_RATE)
input_values_utt2 = load_audio_to_inputs(feature_extractor, audio2_path, SAMPLE_RATE)
# Get text embeddings using model's built-in text_token_embedding
with torch.no_grad():
text_embeddings = model.text_token_embedding(text_token_ids)
# Compute cross-attention embeddings
t1_proj, s1_cross, text_attention_mask = compute_cross_attention_s(
model, text_embeddings, input_values_utt1, device
)
_, s2_cross, _ = compute_cross_attention_s(
model, text_embeddings, input_values_utt2, device
)
# Generate baseline audio
baseline_audio = ar_generate_and_decode(
model=model,
mimi_model=mimi_model,
text_proj=t1_proj,
s_tokens=s1_cross,
text_attention_mask=text_attention_mask,
max_z_tokens=MAX_Z_TOKENS,
end_token_threshold=END_TOKEN_THRESHOLD,
device=device,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f.name, baseline_audio, SAMPLE_RATE)
baseline_path = f.name
return (
"Processing completed successfully!",
token_display,
audio1_path,
audio2_path,
baseline_path,
json.dumps({
"t1_proj": t1_proj.cpu().numpy().tolist(),
"s1_cross": s1_cross.cpu().numpy().tolist(),
"s2_cross": s2_cross.cpu().numpy().tolist(),
"text_attention_mask": text_attention_mask.cpu().numpy().tolist(),
"num_tokens": len(text_token_strs)
}),
audio1_path,
audio2_path
)
@spaces.GPU
def swap_embeddings(embeddings_json: str, swap_indices: str):
"""Perform embedding swap at specified token indices."""
if not embeddings_json:
return "Please process inputs first!", None
if not swap_indices.strip():
return "Please specify token indices to swap (e.g., 0,2,5)!", None
# Parse stored embeddings
embeddings_data = json.loads(embeddings_json)
t1_proj = torch.tensor(embeddings_data["t1_proj"]).to(device)
s1_cross = torch.tensor(embeddings_data["s1_cross"]).to(device)
s2_cross = torch.tensor(embeddings_data["s2_cross"]).to(device)
text_attention_mask = torch.tensor(embeddings_data["text_attention_mask"]).to(device)
num_tokens = embeddings_data["num_tokens"]
# Parse indices
parts = [p.strip() for p in swap_indices.split(",")]
parsed = [int(p) for p in parts if p.isdigit()]
if len(parsed) == 0:
return "No valid indices provided! Use format: 0,2,5", None
valid_indices = [i for i in parsed if 0 <= i < num_tokens]
if len(valid_indices) == 0:
return f"All indices out of range! Valid range: 0-{num_tokens-1}", None
# Perform swap
s_swapped = s1_cross.clone()
for idx in valid_indices:
s_swapped[:, idx:idx+1, :] = s2_cross[:, idx:idx+1, :]
# Generate swapped audio
swapped_audio = ar_generate_and_decode(
model=model,
mimi_model=mimi_model,
text_proj=t1_proj,
s_tokens=s_swapped,
text_attention_mask=text_attention_mask,
max_z_tokens=MAX_Z_TOKENS,
end_token_threshold=END_TOKEN_THRESHOLD,
device=device,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f.name, swapped_audio, SAMPLE_RATE)
swapped_path = f.name
return f"Successfully swapped embeddings at token indices: {valid_indices}", swapped_path
def create_gradio_interface():
"""Create the Gradio interface."""
with gr.Blocks(title="TextSyncMimi Demo") as interface:
gr.Markdown("# TextSyncMimi - Standalone Demo")
gr.Markdown("Generate two voice renditions using OpenAI TTS, then swap speech embeddings at token positions.")
gr.Markdown("**This demo uses only the self-contained TextSyncMimi-v1 model code.**")
with gr.Accordion("Style Instruction Examples", open=False):
gr.Markdown("""
**Example Instructions:**
- *Emotional:* "Speak with excitement and joy", "Sound sad and melancholy"
- *Pace:* "Speak slowly and deliberately", "Talk quickly and energetically"
- *Character:* "Sound like a wise professor", "Speak like an excited child"
""")
with gr.Row():
with gr.Column():
gr.Markdown("## Text-to-Speech Configuration")
transcript_text = gr.Textbox(
label="Transcript Text",
placeholder="Enter text to synthesize...",
lines=3
)
with gr.Row():
voice1 = gr.Dropdown(
choices=TTS_VOICES,
label="Voice 1",
value="alloy"
)
voice2 = gr.Dropdown(
choices=TTS_VOICES,
label="Voice 2",
value="echo"
)
instructions1 = gr.Textbox(
label="Style Instructions for Voice 1",
placeholder="e.g., Speak slowly and calmly",
lines=2
)
instructions2 = gr.Textbox(
label="Style Instructions for Voice 2",
placeholder="e.g., Speak quickly with excitement",
lines=2
)
process_btn = gr.Button("Generate & Process", variant="primary")
process_status = gr.Textbox(label="Status", interactive=False)
with gr.Column():
gr.Markdown("## Tokenization")
tokens_display = gr.Textbox(
label="Tokens",
lines=16,
interactive=False
)
with gr.Row():
with gr.Column():
gr.Markdown("## Generated TTS Audio")
generated_audio1 = gr.Audio(label="Generated Audio 1")
generated_audio2 = gr.Audio(label="Generated Audio 2")
with gr.Column():
gr.Markdown("## Model Output")
baseline_audio = gr.Audio(label="Baseline Reconstruction")
gr.Markdown("### Embedding Swap")
swap_indices_input = gr.Textbox(
label="Token Indices to Swap",
placeholder="e.g., 0,2,5"
)
swap_btn = gr.Button("Perform Swap")
swap_status = gr.Textbox(label="Swap Status", interactive=False)
swapped_audio = gr.Audio(label="Swapped Result")
# Hidden states
embeddings_state = gr.State()
audio1_state = gr.State()
audio2_state = gr.State()
# Event handlers
process_btn.click(
fn=process_inputs,
inputs=[transcript_text, voice1, voice2, instructions1, instructions2],
outputs=[process_status, tokens_display, generated_audio1, generated_audio2,
baseline_audio, embeddings_state, audio1_state, audio2_state]
)
swap_btn.click(
fn=swap_embeddings,
inputs=[embeddings_state, swap_indices_input],
outputs=[swap_status, swapped_audio]
)
return interface
def main():
"""Main function."""
parser = argparse.ArgumentParser(description="HuggingFace Space Demo for TextSyncMimi")
parser.add_argument(
"--model_id",
type=str,
default="potsawee/TextSyncMimi-v1",
help="HuggingFace model ID"
)
parser.add_argument(
"--tokenizer_id",
type=str,
default="meta-llama/Llama-3.1-8B-Instruct",
help="HuggingFace tokenizer ID"
)
parser.add_argument(
"--hf_token",
type=str,
default=None,
help="Hugging Face token (or set HF_TOKEN env var)"
)
parser.add_argument(
"--port",
type=int,
default=7860,
help="Port for Gradio app"
)
parser.add_argument(
"--share",
action="store_true",
help="Create public share link"
)
args = parser.parse_args()
# Check OpenAI API key
if not os.getenv("OPENAI_API_KEY"):
print("❌ Error: OPENAI_API_KEY environment variable is required!")
print("Set it: export OPENAI_API_KEY=your_key_here")
return
# Get HF token
hf_token = args.hf_token or os.getenv("HF_TOKEN")
# Initialize models
print(f"πŸš€ Initializing TextSyncMimi from HuggingFace Hub: {args.model_id}...")
initialize_models(args.model_id, args.tokenizer_id, hf_token)
print("🌐 Launching Gradio interface...")
# Launch
interface = create_gradio_interface()
interface.launch(server_port=args.port, share=args.share)
if __name__ == "__main__":
main()