Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import json
|
| 5 |
+
import torch
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 8 |
+
|
| 9 |
+
@st.cache_resource
|
| 10 |
+
def load_dicts():
|
| 11 |
+
with open("label2ind.json", "r") as file:
|
| 12 |
+
label2ind = json.load(file)
|
| 13 |
+
with open("ind2label.json", "r") as file:
|
| 14 |
+
ind2label = json.load(file)
|
| 15 |
+
return label2ind, ind2label
|
| 16 |
+
|
| 17 |
+
@st.cache_resource
|
| 18 |
+
def load_model():
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
|
| 20 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 21 |
+
"my_model/checkpoint-23000",
|
| 22 |
+
num_labels=len(label2ind),
|
| 23 |
+
problem_type="single_label_classification",
|
| 24 |
+
)
|
| 25 |
+
return tokenizer, model
|
| 26 |
+
|
| 27 |
+
label2ind, ind2label = load_dicts()
|
| 28 |
+
tokenizer, model = load_model()
|
| 29 |
+
|
| 30 |
+
title = st.text_input("Title", value="Math")
|
| 31 |
+
abstract = st.text_input("Abstract", value="Random variable")
|
| 32 |
+
|
| 33 |
+
def get_logits(title, abstract):
|
| 34 |
+
text = title + "###" + abstract
|
| 35 |
+
logits = model(tokenizer(text, return_tensors="pt")['input_ids'])['logits']
|
| 36 |
+
return logits
|
| 37 |
+
|
| 38 |
+
def get_ans(logits):
|
| 39 |
+
ind = torch.argsort(logits, dim=1, descending=True)
|
| 40 |
+
logits = F.softmax(logits)
|
| 41 |
+
cum_sum = 0
|
| 42 |
+
i = 0
|
| 43 |
+
while cum_sum < 0.95:
|
| 44 |
+
cum_sum += logits[0][ind[i]]
|
| 45 |
+
st.write(f"label {ind2label[ind[i]]} with probability {logits[0][ind[i]] * 100}%")
|
| 46 |
+
i +=1
|
| 47 |
+
|
| 48 |
+
if title or abstract:
|
| 49 |
+
st.write(query)
|
| 50 |
+
st.write(result)
|
| 51 |
+
logits = get_logits(text, abstract)
|