Spaces:
Sleeping
Sleeping
Commit
·
2a981df
0
Parent(s):
Initial space setup without model weights
Browse files- README.md +24 -0
- app.py +40 -0
- requirements.txt +3 -0
README.md
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: SmolLM2 Demo
|
| 3 |
+
emoji: 🤖
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.12.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# SmolLM2 Demo
|
| 13 |
+
|
| 14 |
+
This is a demo of the SmolLM2 language model, a small transformer-based model trained on custom text data.
|
| 15 |
+
|
| 16 |
+
## Features
|
| 17 |
+
- Text generation with adjustable parameters
|
| 18 |
+
- Temperature control for creativity
|
| 19 |
+
- Configurable output length
|
| 20 |
+
|
| 21 |
+
## Usage
|
| 22 |
+
1. Enter your prompt text
|
| 23 |
+
2. Adjust the maximum length and temperature
|
| 24 |
+
3. Click generate to see the model's output
|
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Load model and tokenizer from HuggingFace
|
| 6 |
+
model_name = "HuggingFaceTB/SmolLM2-135M"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
def generate(prompt, max_length=50, temperature=0.7):
|
| 11 |
+
"""Generate text from prompt"""
|
| 12 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 13 |
+
|
| 14 |
+
# Generate text
|
| 15 |
+
outputs = model.generate(
|
| 16 |
+
**inputs,
|
| 17 |
+
max_new_tokens=max_length,
|
| 18 |
+
temperature=temperature,
|
| 19 |
+
do_sample=True,
|
| 20 |
+
top_p=0.9,
|
| 21 |
+
repetition_penalty=1.1
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 25 |
+
|
| 26 |
+
# Create Gradio interface
|
| 27 |
+
demo = gr.Interface(
|
| 28 |
+
fn=generate,
|
| 29 |
+
inputs=[
|
| 30 |
+
gr.Textbox(label="Enter your prompt", value="Once upon a time"),
|
| 31 |
+
gr.Slider(minimum=10, maximum=200, value=50, label="Maximum length"),
|
| 32 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="Temperature")
|
| 33 |
+
],
|
| 34 |
+
outputs=gr.Textbox(label="Generated Text"),
|
| 35 |
+
title="SmolLM2 Text Generation",
|
| 36 |
+
description="A small language model based on SmolLM2-135M architecture."
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
if __name__ == "__main__":
|
| 40 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
gradio
|