Commit
·
c9c2be1
1
Parent(s):
552dbf1
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,23 @@
|
|
| 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
|
| 2 |
|
| 3 |
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
|
| 4 |
-
from flask_cors import CORS
|
| 5 |
-
import sys
|
| 6 |
import os
|
| 7 |
-
import
|
| 8 |
-
import librosa.display
|
| 9 |
-
import numpy as np
|
| 10 |
-
from datetime import date
|
| 11 |
-
import re
|
| 12 |
-
import json
|
| 13 |
-
import email
|
| 14 |
-
import csv
|
| 15 |
-
import datetime
|
| 16 |
-
import smtplib
|
| 17 |
-
import ssl
|
| 18 |
-
from email.mime.text import MIMEText
|
| 19 |
-
import time
|
| 20 |
import pytz
|
| 21 |
-
import
|
| 22 |
-
# import pyaudio
|
| 23 |
-
import wave
|
| 24 |
import shutil
|
|
|
|
|
|
|
| 25 |
import warnings
|
|
|
|
|
|
|
|
|
|
| 26 |
import tensorflow as tf
|
| 27 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
from keras.models import Sequential
|
| 29 |
from keras.layers import Dense
|
| 30 |
from keras.utils import to_categorical
|
|
@@ -32,7 +25,8 @@ from keras.layers import Flatten, Dropout, Activation
|
|
| 32 |
from keras.layers import Conv2D, MaxPooling2D
|
| 33 |
from keras.layers import BatchNormalization
|
| 34 |
from sklearn.model_selection import train_test_split
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
warnings.filterwarnings("ignore")
|
| 38 |
|
|
@@ -81,41 +75,33 @@ model.load_weights('speech_emotion_detection_ravdess_savee.h5')
|
|
| 81 |
|
| 82 |
|
| 83 |
def selected_audio(audio):
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
return result
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
def recorded_audio(audio):
|
|
|
|
|
|
|
| 96 |
try:
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
filename_list = []
|
| 102 |
-
|
| 103 |
-
for i in fileList:
|
| 104 |
-
filename = i.split('.')[0]
|
| 105 |
-
filename_list.append(int(filename))
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
new_wav_file="1"
|
| 111 |
-
|
| 112 |
-
new_wav_file = str(new_wav_file) + ".wav"
|
| 113 |
-
|
| 114 |
-
# filepath = os.path.join('recorded_audio', new_wav_file)
|
| 115 |
-
# shutil.move(recorded_audio, filepath)
|
| 116 |
-
filepath = 'recorded_audio/22.wav'
|
| 117 |
-
result = predict_speech_emotion(audio.name)
|
| 118 |
-
return result
|
| 119 |
except Exception as e:
|
| 120 |
print(e)
|
| 121 |
return "ERROR"
|
|
@@ -137,31 +123,14 @@ def predict_speech_emotion(filepath):
|
|
| 137 |
return result
|
| 138 |
|
| 139 |
|
| 140 |
-
# demo = gr.Interface(
|
| 141 |
-
# fn=send_audio,
|
| 142 |
-
# inputs=gr.Audio(source="microphone", type="filepath"),
|
| 143 |
-
# outputs="text")
|
| 144 |
-
|
| 145 |
-
# demo.launch()
|
| 146 |
-
|
| 147 |
-
# selected_audio = gr.Dropdown(["Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],
|
| 148 |
-
# lable = "Input Audio")
|
| 149 |
-
# audio_ui=gr.Audio()
|
| 150 |
-
# text = gr.Textbox()
|
| 151 |
-
# demo = gr.Interface(
|
| 152 |
-
# fn=send_audio,
|
| 153 |
-
# inputs=selected_audio,
|
| 154 |
-
# outputs=[audio_ui,text])
|
| 155 |
-
|
| 156 |
-
# demo.launch()
|
| 157 |
-
|
| 158 |
def return_audio_clip(audio_text):
|
| 159 |
post_file_name = audio_text.lower() + '.wav'
|
| 160 |
filepath = os.path.join("pre_recoreded",post_file_name)
|
| 161 |
return filepath
|
| 162 |
|
| 163 |
with gr.Blocks(css=".gradio-container {background-color: lightgray;}") as demo:
|
| 164 |
-
gr.Markdown("
|
|
|
|
| 165 |
with gr.Row():
|
| 166 |
with gr.Column():
|
| 167 |
input_audio_text = gr.Dropdown(lable="Input Audio",choices=["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],interactive=True)
|
|
|
|
| 1 |
from __future__ import absolute_import, division, print_function, unicode_literals
|
| 2 |
|
| 3 |
from flask import Flask, make_response, render_template, request, jsonify, redirect, url_for, send_from_directory
|
|
|
|
|
|
|
| 4 |
import os
|
| 5 |
+
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import pytz
|
| 7 |
+
import librosa
|
|
|
|
|
|
|
| 8 |
import shutil
|
| 9 |
+
import random
|
| 10 |
+
import string
|
| 11 |
import warnings
|
| 12 |
+
import datetime
|
| 13 |
+
import librosa.display
|
| 14 |
+
import numpy as np
|
| 15 |
import tensorflow as tf
|
| 16 |
import gradio as gr
|
| 17 |
+
|
| 18 |
+
# import pyaudio
|
| 19 |
+
# import wave
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
from keras.models import Sequential
|
| 22 |
from keras.layers import Dense
|
| 23 |
from keras.utils import to_categorical
|
|
|
|
| 25 |
from keras.layers import Conv2D, MaxPooling2D
|
| 26 |
from keras.layers import BatchNormalization
|
| 27 |
from sklearn.model_selection import train_test_split
|
| 28 |
+
|
| 29 |
+
from save_data import flag
|
| 30 |
|
| 31 |
warnings.filterwarnings("ignore")
|
| 32 |
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
def selected_audio(audio):
|
| 78 |
+
try:
|
| 79 |
+
if audio and audio != 'Please select any of the following options':
|
| 80 |
+
post_file_name = audio.lower() + '.wav'
|
| 81 |
+
|
| 82 |
+
filepath = os.path.join("pre_recoreded",post_file_name)
|
| 83 |
+
if os.path.exists(filepath):
|
| 84 |
+
print("SELECT file name => ",filepath)
|
| 85 |
+
result = predict_speech_emotion(filepath)
|
| 86 |
+
print("result = ",result)
|
| 87 |
+
|
| 88 |
return result
|
| 89 |
+
except Exception as e:
|
| 90 |
+
print(e)
|
| 91 |
+
return "ERROR"
|
| 92 |
|
| 93 |
def recorded_audio(audio):
|
| 94 |
+
|
| 95 |
+
get_audio_name = ''
|
| 96 |
try:
|
| 97 |
+
if audio:
|
| 98 |
+
get_audio_name = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(5)])
|
| 99 |
+
audio_file_path = audio.name
|
| 100 |
+
final_output = predict_speech_emotion(audio_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
flag(audio_file_path,get_audio_name,final_output)
|
| 103 |
+
|
| 104 |
+
return final_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
except Exception as e:
|
| 106 |
print(e)
|
| 107 |
return "ERROR"
|
|
|
|
| 123 |
return result
|
| 124 |
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
def return_audio_clip(audio_text):
|
| 127 |
post_file_name = audio_text.lower() + '.wav'
|
| 128 |
filepath = os.path.join("pre_recoreded",post_file_name)
|
| 129 |
return filepath
|
| 130 |
|
| 131 |
with gr.Blocks(css=".gradio-container {background-color: lightgray;}") as demo:
|
| 132 |
+
gr.Markdown("""<h1 style='text-align: center;>Audio Emotion Detection</h1>""")
|
| 133 |
+
|
| 134 |
with gr.Row():
|
| 135 |
with gr.Column():
|
| 136 |
input_audio_text = gr.Dropdown(lable="Input Audio",choices=["Please select any of the following options","Angry", "Happy", "Sad", "Disgust","Fear", "Surprise", "Neutral"],interactive=True)
|