Spaces:
Build error
Build error
| from torch import nn | |
| import torch.nn.functional as F | |
| import torch | |
| import cv2 | |
| import numpy as np | |
| from models.resnet import resnet34 | |
| from models.layers.residual import Res2dBlock,Res1dBlock,DownRes2dBlock | |
| from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d | |
| def myres2Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "relu",order = "NACNAC"): | |
| return Res2dBlock(indim,outdim,k_size,padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order) | |
| def myres1Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "relu",order = "NACNAC"): | |
| return Res1dBlock(indim,outdim,k_size,padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order) | |
| def mydownres2Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "leakyrelu",order = "NACNAC"): | |
| return DownRes2dBlock(indim,outdim,k_size,padding=padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order) | |
| def gaussian2kp(heatmap): | |
| """ | |
| Extract the mean and from a heatmap | |
| """ | |
| shape = heatmap.shape | |
| heatmap = heatmap.unsqueeze(-1) | |
| grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0) | |
| value = (heatmap * grid).sum(dim=(2, 3)) | |
| kp = {'value': value} | |
| return kp | |
| def kp2gaussian(kp, spatial_size, kp_variance): | |
| """ | |
| Transform a keypoint into gaussian like representation | |
| """ | |
| mean = kp['value'] #bs*numkp*2 | |
| coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) #h*w*2 | |
| number_of_leading_dimensions = len(mean.shape) - 1 | |
| shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape #1*1*h*w*2 | |
| coordinate_grid = coordinate_grid.view(*shape) | |
| repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1) | |
| coordinate_grid = coordinate_grid.repeat(*repeats) #bs*numkp*h*w*2 | |
| # Preprocess kp shape | |
| shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 2) | |
| mean = mean.view(*shape) | |
| mean_sub = (coordinate_grid - mean) | |
| out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) | |
| return out | |
| def make_coordinate_grid(spatial_size, type): | |
| """ | |
| Create a meshgrid [-1,1] x [-1,1] of given spatial_size. | |
| """ | |
| h, w = spatial_size | |
| x = torch.arange(w).type(type) | |
| y = torch.arange(h).type(type) | |
| x = (2 * (x / (w - 1)) - 1) | |
| y = (2 * (y / (h - 1)) - 1) | |
| yy = y.view(-1, 1).repeat(1, w) | |
| xx = x.view(1, -1).repeat(h, 1) | |
| meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2) | |
| return meshed | |
| class ResBlock2d(nn.Module): | |
| """ | |
| Res block, preserve spatial resolution. | |
| """ | |
| def __init__(self, in_features, kernel_size, padding): | |
| super(ResBlock2d, self).__init__() | |
| self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
| padding=padding) | |
| self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, | |
| padding=padding) | |
| self.norm1 = BatchNorm2d(in_features, affine=True) | |
| self.norm2 = BatchNorm2d(in_features, affine=True) | |
| def forward(self, x): | |
| out = self.norm1(x) | |
| out = F.relu(out,inplace=True) | |
| out = self.conv1(out) | |
| out = self.norm2(out) | |
| out = F.relu(out,inplace=True) | |
| out = self.conv2(out) | |
| out += x | |
| return out | |
| class UpBlock2d(nn.Module): | |
| """ | |
| Upsampling block for use in decoder. | |
| """ | |
| def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
| super(UpBlock2d, self).__init__() | |
| self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
| padding=padding, groups=groups) | |
| self.norm = BatchNorm2d(out_features, affine=True) | |
| def forward(self, x): | |
| out = F.interpolate(x, scale_factor=2) | |
| del x | |
| out = self.conv(out) | |
| out = self.norm(out) | |
| out = F.relu(out,inplace=True) | |
| return out | |
| class DownBlock2d(nn.Module): | |
| """ | |
| Downsampling block for use in encoder. | |
| """ | |
| def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
| super(DownBlock2d, self).__init__() | |
| self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
| padding=padding, groups=groups) | |
| self.norm = BatchNorm2d(out_features, affine=True) | |
| self.pool = nn.AvgPool2d(kernel_size=(2, 2)) | |
| def forward(self, x): | |
| out = self.conv(x) | |
| del x | |
| out = self.norm(out) | |
| out = F.relu(out,inplace=True) | |
| out = self.pool(out) | |
| return out | |
| class SameBlock2d(nn.Module): | |
| """ | |
| Simple block, preserve spatial resolution. | |
| """ | |
| def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1): | |
| super(SameBlock2d, self).__init__() | |
| self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, | |
| kernel_size=kernel_size, padding=padding, groups=groups) | |
| self.norm = BatchNorm2d(out_features, affine=True) | |
| def forward(self, x): | |
| out = self.conv(x) | |
| out = self.norm(out) | |
| out = F.relu(out,inplace=True) | |
| return out | |
| class Encoder(nn.Module): | |
| """ | |
| Hourglass Encoder | |
| """ | |
| def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
| super(Encoder, self).__init__() | |
| down_blocks = [] | |
| for i in range(num_blocks): | |
| down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), | |
| min(max_features, block_expansion * (2 ** (i + 1))), | |
| kernel_size=3, padding=1)) | |
| self.down_blocks = nn.ModuleList(down_blocks) | |
| def forward(self, x): | |
| outs = [x] | |
| for down_block in self.down_blocks: | |
| outs.append(down_block(outs[-1])) | |
| return outs | |
| class Decoder(nn.Module): | |
| """ | |
| Hourglass Decoder | |
| """ | |
| def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
| super(Decoder, self).__init__() | |
| up_blocks = [] | |
| for i in range(num_blocks)[::-1]: | |
| in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) | |
| out_filters = min(max_features, block_expansion * (2 ** i)) | |
| up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1)) | |
| self.up_blocks = nn.ModuleList(up_blocks) | |
| self.out_filters = block_expansion + in_features | |
| def forward(self, x): | |
| out = x.pop() | |
| for up_block in self.up_blocks: | |
| out = up_block(out) | |
| skip = x.pop() | |
| out = torch.cat([out, skip], dim=1) | |
| return out | |
| class Hourglass(nn.Module): | |
| """ | |
| Hourglass architecture. | |
| """ | |
| def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
| super(Hourglass, self).__init__() | |
| self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) | |
| self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) | |
| self.out_filters = self.decoder.out_filters | |
| def forward(self, x): | |
| return self.decoder(self.encoder(x)) | |
| class AntiAliasInterpolation2d(nn.Module): | |
| """ | |
| Band-limited downsampling, for better preservation of the input signal. | |
| """ | |
| def __init__(self, channels, scale): | |
| super(AntiAliasInterpolation2d, self).__init__() | |
| sigma = (1 / scale - 1) / 2 | |
| kernel_size = 2 * round(sigma * 4) + 1 | |
| self.ka = kernel_size // 2 | |
| self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka | |
| kernel_size = [kernel_size, kernel_size] | |
| sigma = [sigma, sigma] | |
| # The gaussian kernel is the product of the | |
| # gaussian function of each dimension. | |
| kernel = 1 | |
| meshgrids = torch.meshgrid( | |
| [ | |
| torch.arange(size, dtype=torch.float32) | |
| for size in kernel_size | |
| ] | |
| ) | |
| for size, std, mgrid in zip(kernel_size, sigma, meshgrids): | |
| mean = (size - 1) / 2 | |
| kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2)) | |
| # Make sure sum of values in gaussian kernel equals 1. | |
| kernel = kernel / torch.sum(kernel) | |
| # Reshape to depthwise convolutional weight | |
| kernel = kernel.view(1, 1, *kernel.size()) | |
| kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) | |
| self.register_buffer('weight', kernel) | |
| self.groups = channels | |
| self.scale = scale | |
| def forward(self, input): | |
| if self.scale == 1.0: | |
| return input | |
| out = F.pad(input, (self.ka, self.kb, self.ka, self.kb)) | |
| out = F.conv2d(out, weight=self.weight, groups=self.groups) | |
| out = F.interpolate(out, scale_factor=(self.scale, self.scale)) | |
| return out | |
| def draw_annotation_box( image, rotation_vector, translation_vector, color=(255, 255, 255), line_width=2): | |
| """Draw a 3D box as annotation of pose""" | |
| camera_matrix = np.array( | |
| [[233.333, 0, 128], | |
| [0, 233.333, 128], | |
| [0, 0, 1]], dtype="double") | |
| dist_coeefs = np.zeros((4, 1)) | |
| point_3d = [] | |
| rear_size = 75 | |
| rear_depth = 0 | |
| point_3d.append((-rear_size, -rear_size, rear_depth)) | |
| point_3d.append((-rear_size, rear_size, rear_depth)) | |
| point_3d.append((rear_size, rear_size, rear_depth)) | |
| point_3d.append((rear_size, -rear_size, rear_depth)) | |
| point_3d.append((-rear_size, -rear_size, rear_depth)) | |
| front_size = 100 | |
| front_depth = 100 | |
| point_3d.append((-front_size, -front_size, front_depth)) | |
| point_3d.append((-front_size, front_size, front_depth)) | |
| point_3d.append((front_size, front_size, front_depth)) | |
| point_3d.append((front_size, -front_size, front_depth)) | |
| point_3d.append((-front_size, -front_size, front_depth)) | |
| point_3d = np.array(point_3d, dtype=np.float64).reshape(-1, 3) | |
| # Map to 2d image points | |
| (point_2d, _) = cv2.projectPoints(point_3d, | |
| rotation_vector, | |
| translation_vector, | |
| camera_matrix, | |
| dist_coeefs) | |
| point_2d = np.int32(point_2d.reshape(-1, 2)) | |
| # Draw all the lines | |
| cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA) | |
| cv2.line(image, tuple(point_2d[1]), tuple( | |
| point_2d[6]), color, line_width, cv2.LINE_AA) | |
| cv2.line(image, tuple(point_2d[2]), tuple( | |
| point_2d[7]), color, line_width, cv2.LINE_AA) | |
| cv2.line(image, tuple(point_2d[3]), tuple( | |
| point_2d[8]), color, line_width, cv2.LINE_AA) | |
| class up_sample(nn.Module): | |
| def __init__(self, scale_factor): | |
| super(up_sample, self).__init__() | |
| self.interp = nn.functional.interpolate | |
| self.scale_factor = scale_factor | |
| def forward(self, x): | |
| x = self.interp(x, scale_factor=self.scale_factor,mode = 'linear',align_corners = True) | |
| return x | |
| class MyResNet34(nn.Module): | |
| def __init__(self,embedding_dim,input_channel = 3): | |
| super(MyResNet34, self).__init__() | |
| self.resnet = resnet34(norm_layer = BatchNorm2d,num_classes=embedding_dim,input_channel = input_channel) | |
| def forward(self, x): | |
| return self.resnet(x) | |
| class ImagePyramide(torch.nn.Module): | |
| """ | |
| Create image pyramide for computing pyramide perceptual loss. See Sec 3.3 | |
| """ | |
| def __init__(self, scales, num_channels): | |
| super(ImagePyramide, self).__init__() | |
| downs = {} | |
| for scale in scales: | |
| downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale) | |
| self.downs = nn.ModuleDict(downs) | |
| def forward(self, x): | |
| out_dict = {} | |
| for scale, down_module in self.downs.items(): | |
| out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x) | |
| return out_dict |