import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "zltd/zbrain_llm_0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define a function for text generation def generate_text(prompt, max_length=100): inputs = tokenizer(prompt, return_tensors="pt") output = model.generate(**inputs, max_length=max_length) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text # Create a Gradio interface demo = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Text Generation with Custom Model", description="Enter a prompt to generate text.", ) if __name__ == "__main__": demo.launch()