Spaces:
Sleeping
Sleeping
Upload model_consumer.py
Browse files- src/model_consumer.py +33 -0
src/model_consumer.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# model repo ID
|
5 |
+
model_id = "prd101-wd/phi1_5-bankingqa-merged"
|
6 |
+
|
7 |
+
# Load model only once
|
8 |
+
@st.cache_resource
|
9 |
+
def load_model():
|
10 |
+
return pipeline("question-answering", model=model_id)
|
11 |
+
|
12 |
+
# Create a text generation pipeline
|
13 |
+
pipe = load_model()
|
14 |
+
|
15 |
+
# Streamlit UI
|
16 |
+
st.title("Banking HelpDesk from Finetuned Phi1-5")
|
17 |
+
|
18 |
+
st.markdown("Ask a question and the fine-tuned Phi-1.5 model will answer.")
|
19 |
+
|
20 |
+
user_input = st.text_area("Your question:", height=100)
|
21 |
+
|
22 |
+
if st.button("Ask"):
|
23 |
+
if user_input.strip():
|
24 |
+
# Format the prompt like Alpaca-style
|
25 |
+
prompt = f"### Instruction:\n{user_input}\n\n### Response:\n"
|
26 |
+
output = pipe(prompt, max_new_tokens=200, do_sample=True)[0]["generated_text"]
|
27 |
+
|
28 |
+
# Extract only the model's response (remove prompt part if included in output)
|
29 |
+
answer = output.split("### Response:")[-1].strip()
|
30 |
+
st.markdown("### HelpdeskBot Answer:")
|
31 |
+
st.success(answer)
|
32 |
+
else:
|
33 |
+
st.warning("Please enter a question.")
|