import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline # Load model and tokenizer model_name = "prd101-wd/phi1_5-sentiment-merged" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Create a pipeline classifier = pipeline("text-classification", model=model, tokenizer=tokenizer) # Streamlit UI st.title("Sentiment Classifier") text = st.text_area("Enter text to classify:") if st.button("Classify"): if text.strip(): result = classifier(text)[0] st.markdown(f"**Label:** {result['label']} \n**Score:** {result['score']:.4f}") else: st.warning("Please enter some text.")