Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoImageProcessor | |
from transformers import SiglipForImageClassification | |
from transformers.image_utils import load_image | |
from PIL import Image | |
import torch | |
# Load model and processor | |
model_name = "prithivMLmods/Augmented-Waste-Classifier-SigLIP2" | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
def waste_classification(image): | |
"""Predicts waste classification for an image.""" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() | |
labels = { | |
"0": "Battery", "1": "Biological", "2": "Cardboard", "3": "Clothes", | |
"4": "Glass", "5": "Metal", "6": "Paper", "7": "Plastic", | |
"8": "Shoes", "9": "Trash" | |
} | |
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
return predictions | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=waste_classification, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Label(label="Prediction Scores"), | |
title="Augmented Waste Classification", | |
description="Upload an image to classify the type of waste." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() | |