Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from transformers import AutoImageProcessor | |
from transformers import SiglipForImageClassification | |
from transformers.image_utils import load_image | |
from PIL import Image | |
import torch | |
# Load model and processor | |
model_name = "prithivMLmods/Indian-Western-Food-34" | |
model = SiglipForImageClassification.from_pretrained(model_name) | |
processor = AutoImageProcessor.from_pretrained(model_name) | |
def food_classification(image): | |
"""Predicts the type of food in an image.""" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() | |
labels = { | |
"0": "Baked Potato", "1": "Crispy Chicken", "2": "Donut", "3": "Fries", | |
"4": "Hot Dog", "5": "Sandwich", "6": "Taco", "7": "Taquito", "8": "Apple Pie", | |
"9": "Burger", "10": "Butter Naan", "11": "Chai", "12": "Chapati", "13": "Cheesecake", | |
"14": "Chicken Curry", "15": "Chole Bhature", "16": "Dal Makhani", "17": "Dhokla", | |
"18": "Fried Rice", "19": "Ice Cream", "20": "Idli", "21": "Jalebi", "22": "Kaathi Rolls", | |
"23": "Kadai Paneer", "24": "Kulfi", "25": "Masala Dosa", "26": "Momos", "27": "Omelette", | |
"28": "Paani Puri", "29": "Pakode", "30": "Pav Bhaji", "31": "Pizza", "32": "Samosa", | |
"33": "Sushi" | |
} | |
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
return predictions | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=food_classification, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Label(label="Prediction Scores"), | |
title="Indian & Western Food Classification", | |
description="Upload a food image to classify it into one of the 34 food types." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
iface.launch() |