Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import AutoImageProcessor | |
| from transformers import SiglipForImageClassification | |
| from transformers.image_utils import load_image | |
| from PIL import Image | |
| import torch | |
| # Load model and processor | |
| model_name = "prithivMLmods/Indian-Western-Food-34" | |
| model = SiglipForImageClassification.from_pretrained(model_name) | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| def food_classification(image): | |
| """Predicts the type of food in an image.""" | |
| image = Image.fromarray(image).convert("RGB") | |
| inputs = processor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() | |
| labels = { | |
| "0": "Baked Potato", "1": "Crispy Chicken", "2": "Donut", "3": "Fries", | |
| "4": "Hot Dog", "5": "Sandwich", "6": "Taco", "7": "Taquito", "8": "Apple Pie", | |
| "9": "Burger", "10": "Butter Naan", "11": "Chai", "12": "Chapati", "13": "Cheesecake", | |
| "14": "Chicken Curry", "15": "Chole Bhature", "16": "Dal Makhani", "17": "Dhokla", | |
| "18": "Fried Rice", "19": "Ice Cream", "20": "Idli", "21": "Jalebi", "22": "Kaathi Rolls", | |
| "23": "Kadai Paneer", "24": "Kulfi", "25": "Masala Dosa", "26": "Momos", "27": "Omelette", | |
| "28": "Paani Puri", "29": "Pakode", "30": "Pav Bhaji", "31": "Pizza", "32": "Samosa", | |
| "33": "Sushi" | |
| } | |
| predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
| return predictions | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=food_classification, | |
| inputs=gr.Image(type="numpy"), | |
| outputs=gr.Label(label="Prediction Scores"), | |
| title="Indian & Western Food Classification", | |
| description="Upload a food image to classify it into one of the 34 food types." | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| iface.launch() |