Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ from transformers import (
|
|
13 |
TextIteratorStreamer,
|
14 |
)
|
15 |
from transformers import Qwen2_5_VLForConditionalGeneration
|
16 |
-
from pdf2image import convert_from_path
|
17 |
|
18 |
# Helper Functions
|
19 |
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
@@ -79,25 +78,19 @@ docscopeocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
79 |
|
80 |
# Main Inference Function
|
81 |
@spaces.GPU
|
82 |
-
def model_inference(
|
|
|
|
|
|
|
83 |
if not text and not files:
|
84 |
-
yield "Error: Please input a text query or provide files (images
|
85 |
return
|
86 |
|
87 |
-
# Process files: images
|
88 |
image_list = []
|
89 |
-
for idx, file in enumerate(files
|
90 |
-
if file.
|
91 |
-
|
92 |
-
pdf_images = convert_from_path(file.name)
|
93 |
-
for page_num, img in enumerate(pdf_images, start=1):
|
94 |
-
label = f"PDF {idx+1} Page {page_num}:"
|
95 |
-
image_list.append((label, img))
|
96 |
-
except Exception as e:
|
97 |
-
yield f"Error converting PDF: {str(e)}"
|
98 |
-
return
|
99 |
-
elif file.name.lower().endswith((".mp4", ".avi", ".mov")):
|
100 |
-
frames = downsample_video(file.name)
|
101 |
if not frames:
|
102 |
yield "Error: Could not extract frames from the video."
|
103 |
return
|
@@ -106,7 +99,7 @@ def model_inference(text, files, history, use_docscopeocr):
|
|
106 |
image_list.append((label, frame))
|
107 |
else:
|
108 |
try:
|
109 |
-
img = load_image(file
|
110 |
label = f"Image {idx+1}:"
|
111 |
image_list.append((label, img))
|
112 |
except Exception as e:
|
@@ -153,42 +146,28 @@ def model_inference(text, files, history, use_docscopeocr):
|
|
153 |
yield buffer
|
154 |
|
155 |
# Gradio Interface
|
156 |
-
def chat_interface(text, files, use_docscopeocr, history):
|
157 |
-
if text is None and files is None:
|
158 |
-
return "Error: Please input a text query or provide files."
|
159 |
-
return model_inference(text, files, history, use_docscopeocr)
|
160 |
-
|
161 |
examples = [
|
162 |
-
{"text": "OCR the Text in the Image", "files": ["rolm/1.jpeg"]},
|
163 |
-
{"text": "Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]},
|
164 |
-
{"text": "OCR the Image", "files": ["rolm/3.jpeg"]},
|
165 |
-
{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]},
|
166 |
]
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
def generate(history, text, files, use_docscopeocr):
|
185 |
-
if not history:
|
186 |
-
history = []
|
187 |
-
for response in model_inference(text, files, history, use_docscopeocr):
|
188 |
-
history.append({"role": "assistant", "content": response})
|
189 |
-
yield history
|
190 |
-
|
191 |
-
submit_btn.click(submit, [text_input, file_input, use_docscopeocr, chat], [chat, submit_btn, stop_btn])
|
192 |
-
submit_btn.click(generate, [chat, text_input, file_input, use_docscopeocr], chat)
|
193 |
|
194 |
demo.launch(debug=True, ssr_mode=False)
|
|
|
13 |
TextIteratorStreamer,
|
14 |
)
|
15 |
from transformers import Qwen2_5_VLForConditionalGeneration
|
|
|
16 |
|
17 |
# Helper Functions
|
18 |
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
|
|
78 |
|
79 |
# Main Inference Function
|
80 |
@spaces.GPU
|
81 |
+
def model_inference(message, history, use_docscopeocr):
|
82 |
+
text = message["text"].strip()
|
83 |
+
files = message.get("files", [])
|
84 |
+
|
85 |
if not text and not files:
|
86 |
+
yield "Error: Please input a text query or provide files (images or videos)."
|
87 |
return
|
88 |
|
89 |
+
# Process files: images and videos only
|
90 |
image_list = []
|
91 |
+
for idx, file in enumerate(files):
|
92 |
+
if file.lower().endswith((".mp4", ".avi", ".mov")):
|
93 |
+
frames = downsample_video(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
if not frames:
|
95 |
yield "Error: Could not extract frames from the video."
|
96 |
return
|
|
|
99 |
image_list.append((label, frame))
|
100 |
else:
|
101 |
try:
|
102 |
+
img = load_image(file)
|
103 |
label = f"Image {idx+1}:"
|
104 |
image_list.append((label, img))
|
105 |
except Exception as e:
|
|
|
146 |
yield buffer
|
147 |
|
148 |
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
149 |
examples = [
|
150 |
+
[{"text": "OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
151 |
+
[{"text": "Explain the Ad in Detail", "files": ["examples/videoplayback.mp4"]}],
|
152 |
+
[{"text": "OCR the Image", "files": ["rolm/3.jpeg"]}],
|
153 |
+
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
154 |
]
|
155 |
|
156 |
+
demo = gr.ChatInterface(
|
157 |
+
fn=model_inference,
|
158 |
+
description="# **DocScope OCR `VL/OCR`**",
|
159 |
+
examples=examples,
|
160 |
+
textbox=gr.MultimodalTextbox(
|
161 |
+
label="Query Input",
|
162 |
+
file_types=["image", "video"],
|
163 |
+
file_count="multiple",
|
164 |
+
placeholder="Input your query and optionally upload image(s) or video(s). Select the model using the checkbox."
|
165 |
+
),
|
166 |
+
stop_btn="Stop Generation",
|
167 |
+
multimodal=True,
|
168 |
+
cache_examples=False,
|
169 |
+
theme="bethecloud/storj_theme",
|
170 |
+
additional_inputs=[gr.Checkbox(label="Use DocScopeOCR", value=True, info="Check to use DocScopeOCR, uncheck to use Qwen2VL OCR")],
|
171 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
demo.launch(debug=True, ssr_mode=False)
|