import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
from PIL import Image
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
)
from transformers import Qwen2_5_VLForConditionalGeneration
# Helper Functions
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
"""
Returns an HTML snippet for a thin animated progress bar with a label.
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
"""
return f'''
'''
# Model and Processor Setup
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
DOCSCOPEOCR_MODEL_ID = "prithivMLmods/docscopeOCR-7B-050425-exp"
docscopeocr_processor = AutoProcessor.from_pretrained(DOCSCOPEOCR_MODEL_ID, trust_remote_code=True)
docscopeocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
DOCSCOPEOCR_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Main Inference Function
@spaces.GPU
def model_inference(message, history, use_docscopeocr):
text = message["text"].strip()
files = message.get("files", [])
if not text and not files:
yield "Error: Please input a text query or provide image files."
return
# Process files: images only
image_list = []
for idx, file in enumerate(files):
try:
img = load_image(file)
label = f"Image {idx+1}:"
image_list.append((label, img))
except Exception as e:
yield f"Error loading image: {str(e)}"
return
# Build content list
content = [{"type": "text", "text": text}]
for label, img in image_list:
content.append({"type": "text", "text": label})
content.append({"type": "image", "image": img})
messages = [{"role": "user", "content": content}]
# Select processor and model
if use_docscopeocr:
processor = docscopeocr_processor
model = docscopeocr_model
model_name = "DocScopeOCR"
else:
processor = qwen_processor
model = qwen_model
model_name = "Qwen2VL OCR"
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
all_images = [item["image"] for item in content if item["type"] == "image"]
inputs = processor(
text=[prompt_full],
images=all_images if all_images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html(f"Processing with {model_name}")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface
examples = [
[{"text": "OCR the text in the image", "files": ["example/image1.jpg"]}],
[{"text": "Describe the content of the image", "files": ["example/image2.jpg"]}],
[{"text": "Extract the image content", "files": ["example/image3.jpg"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **DocScope OCR `VL/OCR`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image"],
file_count="multiple",
placeholder="Input your query and optionally upload image(s). Select the model using the checkbox."
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
theme="bethecloud/storj_theme",
additional_inputs=[gr.Checkbox(label="Use DocScopeOCR", value=True, info="Check to use DocScopeOCR, uncheck to use Qwen2VL OCR")],
)
demo.launch(debug=True, ssr_mode=False)