Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,25 +4,30 @@ from threading import Thread
|
|
4 |
import time
|
5 |
import torch
|
6 |
import spaces
|
7 |
-
from PIL import Image
|
8 |
-
import requests
|
9 |
-
from io import BytesIO
|
10 |
import cv2
|
11 |
import numpy as np
|
|
|
12 |
from transformers import (
|
13 |
Qwen2VLForConditionalGeneration,
|
14 |
AutoProcessor,
|
15 |
TextIteratorStreamer,
|
16 |
AutoModelForImageTextToText,
|
17 |
)
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
return f'''
|
22 |
<div style="display: flex; align-items: center;">
|
23 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
24 |
-
<div style="width: 110px; height: 5px; background-color:
|
25 |
-
<div style="width: 100%; height: 100%; background-color:
|
26 |
</div>
|
27 |
</div>
|
28 |
<style>
|
@@ -33,13 +38,19 @@ def progress_bar_html(label: str) -> str:
|
|
33 |
</style>
|
34 |
'''
|
35 |
|
36 |
-
# Helper function to downsample a video into 10 evenly spaced frames.
|
37 |
def downsample_video(video_path):
|
|
|
|
|
|
|
|
|
38 |
vidcap = cv2.VideoCapture(video_path)
|
39 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
40 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
41 |
frames = []
|
42 |
-
|
|
|
|
|
|
|
43 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
44 |
for i in frame_indices:
|
45 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
@@ -52,10 +63,9 @@ def downsample_video(video_path):
|
|
52 |
vidcap.release()
|
53 |
return frames
|
54 |
|
55 |
-
# Model and
|
56 |
-
|
57 |
-
|
58 |
-
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
|
59 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
60 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
61 |
QV_MODEL_ID,
|
@@ -63,22 +73,31 @@ qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
63 |
torch_dtype=torch.float16
|
64 |
).to("cuda").eval()
|
65 |
|
66 |
-
#
|
67 |
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
|
68 |
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
|
69 |
aya_model = AutoModelForImageTextToText.from_pretrained(
|
70 |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
71 |
)
|
72 |
|
73 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# Main Inference Function
|
75 |
-
# ---------------------------
|
76 |
@spaces.GPU
|
77 |
def model_inference(input_dict, history):
|
78 |
text = input_dict["text"].strip()
|
79 |
files = input_dict.get("files", [])
|
80 |
-
|
81 |
-
#
|
|
|
|
|
82 |
if text.lower().startswith("@video-infer"):
|
83 |
prompt = text[len("@video-infer"):].strip()
|
84 |
if not files:
|
@@ -89,16 +108,12 @@ def model_inference(input_dict, history):
|
|
89 |
if not frames:
|
90 |
yield "Error: Could not extract frames from the video."
|
91 |
return
|
92 |
-
# Build
|
93 |
-
content_list = []
|
94 |
-
content_list.append({"type": "text", "text": prompt})
|
95 |
for frame, timestamp in frames:
|
96 |
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
97 |
content_list.append({"type": "image", "image": frame})
|
98 |
-
messages = [{
|
99 |
-
"role": "user",
|
100 |
-
"content": content_list,
|
101 |
-
}]
|
102 |
inputs = aya_processor.apply_chat_template(
|
103 |
messages,
|
104 |
padding=True,
|
@@ -126,50 +141,114 @@ def model_inference(input_dict, history):
|
|
126 |
yield buffer
|
127 |
return
|
128 |
|
129 |
-
#
|
130 |
if text.lower().startswith("@aya-vision"):
|
131 |
text_prompt = text[len("@aya-vision"):].strip()
|
132 |
if not files:
|
133 |
yield "Error: Please provide an image for the @aya-vision feature."
|
134 |
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
else:
|
136 |
-
#
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
messages = [{
|
140 |
"role": "user",
|
141 |
"content": [
|
142 |
-
{"type": "image", "image": image},
|
143 |
{"type": "text", "text": text_prompt},
|
144 |
],
|
145 |
}]
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
padding=True,
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
buffer += new_text
|
167 |
-
buffer = buffer.replace("<|im_end|>", "")
|
168 |
-
time.sleep(0.01)
|
169 |
-
yield buffer
|
170 |
-
return
|
171 |
-
|
172 |
-
# Default branch: Use Qwen2VL OCR for text (with optional images).
|
173 |
if len(files) > 1:
|
174 |
images = [load_image(image) for image in files]
|
175 |
elif len(files) == 1:
|
@@ -178,7 +257,7 @@ def model_inference(input_dict, history):
|
|
178 |
images = []
|
179 |
|
180 |
if text == "" and not images:
|
181 |
-
yield "Error: Please input a query and optionally image(s)."
|
182 |
return
|
183 |
if text == "" and images:
|
184 |
yield "Error: Please input a text query along with the image(s)."
|
@@ -191,23 +270,17 @@ def model_inference(input_dict, history):
|
|
191 |
{"type": "text", "text": text},
|
192 |
],
|
193 |
}]
|
194 |
-
|
195 |
-
prompt = qwen_processor.apply_chat_template(
|
196 |
-
messages, tokenize=False, add_generation_prompt=True
|
197 |
-
)
|
198 |
inputs = qwen_processor(
|
199 |
-
text=[
|
200 |
images=images if images else None,
|
201 |
return_tensors="pt",
|
202 |
padding=True,
|
203 |
).to("cuda")
|
204 |
-
|
205 |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
206 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
207 |
-
|
208 |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
209 |
thread.start()
|
210 |
-
|
211 |
buffer = ""
|
212 |
yield progress_bar_html("Processing with Qwen2VL OCR")
|
213 |
for new_text in streamer:
|
@@ -216,32 +289,31 @@ def model_inference(input_dict, history):
|
|
216 |
time.sleep(0.01)
|
217 |
yield buffer
|
218 |
|
219 |
-
|
220 |
-
# Gradio Interface Setup
|
221 |
-
|
222 |
examples = [
|
|
|
|
|
223 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
224 |
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
|
225 |
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
226 |
-
[{"text": "@video-infer Explain what is happening in this video
|
227 |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
228 |
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
|
229 |
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
230 |
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
231 |
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
232 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
233 |
-
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
234 |
]
|
235 |
|
236 |
demo = gr.ChatInterface(
|
237 |
fn=model_inference,
|
238 |
-
description="# **Multimodal OCR `@aya-vision for image, @video-infer for video`**",
|
239 |
examples=examples,
|
240 |
textbox=gr.MultimodalTextbox(
|
241 |
label="Query Input",
|
242 |
file_types=["image", "video"],
|
243 |
file_count="multiple",
|
244 |
-
placeholder="Tag @aya-vision for Aya
|
245 |
),
|
246 |
stop_btn="Stop Generation",
|
247 |
multimodal=True,
|
|
|
4 |
import time
|
5 |
import torch
|
6 |
import spaces
|
|
|
|
|
|
|
7 |
import cv2
|
8 |
import numpy as np
|
9 |
+
from PIL import Image
|
10 |
from transformers import (
|
11 |
Qwen2VLForConditionalGeneration,
|
12 |
AutoProcessor,
|
13 |
TextIteratorStreamer,
|
14 |
AutoModelForImageTextToText,
|
15 |
)
|
16 |
+
from transformers import Qwen2_5_VLForConditionalGeneration
|
17 |
|
18 |
+
# ---------------------------
|
19 |
+
# Helper Functions
|
20 |
+
# ---------------------------
|
21 |
+
def progress_bar_html(label: str, primary_color: str = "#FF69B4", secondary_color: str = "#FFB6C1") -> str:
|
22 |
+
"""
|
23 |
+
Returns an HTML snippet for a thin animated progress bar with a label.
|
24 |
+
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
|
25 |
+
"""
|
26 |
return f'''
|
27 |
<div style="display: flex; align-items: center;">
|
28 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
29 |
+
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
30 |
+
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
31 |
</div>
|
32 |
</div>
|
33 |
<style>
|
|
|
38 |
</style>
|
39 |
'''
|
40 |
|
|
|
41 |
def downsample_video(video_path):
|
42 |
+
"""
|
43 |
+
Downsamples a video file by extracting 10 evenly spaced frames.
|
44 |
+
Returns a list of tuples (PIL.Image, timestamp).
|
45 |
+
"""
|
46 |
vidcap = cv2.VideoCapture(video_path)
|
47 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
48 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
49 |
frames = []
|
50 |
+
if total_frames <= 0 or fps <= 0:
|
51 |
+
vidcap.release()
|
52 |
+
return frames
|
53 |
+
# Determine 10 evenly spaced frame indices.
|
54 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
55 |
for i in frame_indices:
|
56 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
|
|
63 |
vidcap.release()
|
64 |
return frames
|
65 |
|
66 |
+
# Model and Processor Setup
|
67 |
+
# Qwen2VL OCR (default branch)
|
68 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
|
|
69 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
70 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
71 |
QV_MODEL_ID,
|
|
|
73 |
torch_dtype=torch.float16
|
74 |
).to("cuda").eval()
|
75 |
|
76 |
+
# Aya-Vision branch (for @aya-vision and @video-infer)
|
77 |
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
|
78 |
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
|
79 |
aya_model = AutoModelForImageTextToText.from_pretrained(
|
80 |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
81 |
)
|
82 |
|
83 |
+
# RolmOCR branch (@RolmOCR)
|
84 |
+
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
85 |
+
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
86 |
+
rolmocr_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
87 |
+
ROLMOCR_MODEL_ID,
|
88 |
+
trust_remote_code=True,
|
89 |
+
torch_dtype=torch.bfloat16
|
90 |
+
).to("cuda").eval()
|
91 |
+
|
92 |
# Main Inference Function
|
|
|
93 |
@spaces.GPU
|
94 |
def model_inference(input_dict, history):
|
95 |
text = input_dict["text"].strip()
|
96 |
files = input_dict.get("files", [])
|
97 |
+
|
98 |
+
# ---------------------------
|
99 |
+
# Aya-Vision Video Inference (@video-infer)
|
100 |
+
# ---------------------------
|
101 |
if text.lower().startswith("@video-infer"):
|
102 |
prompt = text[len("@video-infer"):].strip()
|
103 |
if not files:
|
|
|
108 |
if not frames:
|
109 |
yield "Error: Could not extract frames from the video."
|
110 |
return
|
111 |
+
# Build the message with the text prompt followed by each frame (with timestamp label).
|
112 |
+
content_list = [{"type": "text", "text": prompt}]
|
|
|
113 |
for frame, timestamp in frames:
|
114 |
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
115 |
content_list.append({"type": "image", "image": frame})
|
116 |
+
messages = [{"role": "user", "content": content_list}]
|
|
|
|
|
|
|
117 |
inputs = aya_processor.apply_chat_template(
|
118 |
messages,
|
119 |
padding=True,
|
|
|
141 |
yield buffer
|
142 |
return
|
143 |
|
144 |
+
# Aya-Vision Image Inference (@aya-vision)
|
145 |
if text.lower().startswith("@aya-vision"):
|
146 |
text_prompt = text[len("@aya-vision"):].strip()
|
147 |
if not files:
|
148 |
yield "Error: Please provide an image for the @aya-vision feature."
|
149 |
return
|
150 |
+
image = load_image(files[0])
|
151 |
+
yield progress_bar_html("Processing with Aya-Vision-8b")
|
152 |
+
messages = [{
|
153 |
+
"role": "user",
|
154 |
+
"content": [
|
155 |
+
{"type": "image", "image": image},
|
156 |
+
{"type": "text", "text": text_prompt},
|
157 |
+
],
|
158 |
+
}]
|
159 |
+
inputs = aya_processor.apply_chat_template(
|
160 |
+
messages,
|
161 |
+
padding=True,
|
162 |
+
add_generation_prompt=True,
|
163 |
+
tokenize=True,
|
164 |
+
return_dict=True,
|
165 |
+
return_tensors="pt"
|
166 |
+
).to(aya_model.device)
|
167 |
+
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
|
168 |
+
generation_kwargs = dict(
|
169 |
+
inputs,
|
170 |
+
streamer=streamer,
|
171 |
+
max_new_tokens=1024,
|
172 |
+
do_sample=True,
|
173 |
+
temperature=0.3
|
174 |
+
)
|
175 |
+
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
|
176 |
+
thread.start()
|
177 |
+
buffer = ""
|
178 |
+
for new_text in streamer:
|
179 |
+
buffer += new_text
|
180 |
+
buffer = buffer.replace("<|im_end|>", "")
|
181 |
+
time.sleep(0.01)
|
182 |
+
yield buffer
|
183 |
+
return
|
184 |
+
|
185 |
+
# RolmOCR Inference (@RolmOCR)
|
186 |
+
if text.lower().startswith("@rolmocr"):
|
187 |
+
# Remove the tag from the query.
|
188 |
+
text_prompt = text[len("@rolmocr"):].strip()
|
189 |
+
# Check if a video is provided for inference.
|
190 |
+
if files and isinstance(files[0], str) and files[0].lower().endswith((".mp4", ".avi", ".mov")):
|
191 |
+
video_path = files[0]
|
192 |
+
frames = downsample_video(video_path)
|
193 |
+
if not frames:
|
194 |
+
yield "Error: Could not extract frames from the video."
|
195 |
+
return
|
196 |
+
# Build the message: prompt followed by each frame with its timestamp.
|
197 |
+
content_list = [{"type": "text", "text": text_prompt}]
|
198 |
+
for image, timestamp in frames:
|
199 |
+
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
200 |
+
content_list.append({"type": "image", "image": image})
|
201 |
+
messages = [{"role": "user", "content": content_list}]
|
202 |
+
# For video, extract images only.
|
203 |
+
video_images = [image for image, _ in frames]
|
204 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
205 |
+
inputs = rolmocr_processor(
|
206 |
+
text=[prompt_full],
|
207 |
+
images=video_images,
|
208 |
+
return_tensors="pt",
|
209 |
+
padding=True,
|
210 |
+
).to("cuda")
|
211 |
else:
|
212 |
+
# Assume image(s) or text query.
|
213 |
+
if len(files) > 1:
|
214 |
+
images = [load_image(image) for image in files]
|
215 |
+
elif len(files) == 1:
|
216 |
+
images = [load_image(files[0])]
|
217 |
+
else:
|
218 |
+
images = []
|
219 |
+
if text_prompt == "" and not images:
|
220 |
+
yield "Error: Please input a text query and/or provide an image for the @RolmOCR feature."
|
221 |
+
return
|
222 |
messages = [{
|
223 |
"role": "user",
|
224 |
"content": [
|
225 |
+
*[{"type": "image", "image": image} for image in images],
|
226 |
{"type": "text", "text": text_prompt},
|
227 |
],
|
228 |
}]
|
229 |
+
prompt_full = rolmocr_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
230 |
+
inputs = rolmocr_processor(
|
231 |
+
text=[prompt_full],
|
232 |
+
images=images if images else None,
|
233 |
+
return_tensors="pt",
|
234 |
padding=True,
|
235 |
+
).to("cuda")
|
236 |
+
streamer = TextIteratorStreamer(rolmocr_processor, skip_prompt=True, skip_special_tokens=True)
|
237 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
238 |
+
thread = Thread(target=rolmocr_model.generate, kwargs=generation_kwargs)
|
239 |
+
thread.start()
|
240 |
+
buffer = ""
|
241 |
+
# Use a different color scheme for RolmOCR (purple-themed).
|
242 |
+
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)", primary_color="#4B0082", secondary_color="#9370DB")
|
243 |
+
for new_text in streamer:
|
244 |
+
buffer += new_text
|
245 |
+
buffer = buffer.replace("<|im_end|>", "")
|
246 |
+
time.sleep(0.01)
|
247 |
+
yield buffer
|
248 |
+
return
|
249 |
+
|
250 |
+
# Default Inference: Qwen2VL OCR
|
251 |
+
# Process files: support multiple images.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
if len(files) > 1:
|
253 |
images = [load_image(image) for image in files]
|
254 |
elif len(files) == 1:
|
|
|
257 |
images = []
|
258 |
|
259 |
if text == "" and not images:
|
260 |
+
yield "Error: Please input a text query and optionally image(s)."
|
261 |
return
|
262 |
if text == "" and images:
|
263 |
yield "Error: Please input a text query along with the image(s)."
|
|
|
270 |
{"type": "text", "text": text},
|
271 |
],
|
272 |
}]
|
273 |
+
prompt_full = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
|
|
274 |
inputs = qwen_processor(
|
275 |
+
text=[prompt_full],
|
276 |
images=images if images else None,
|
277 |
return_tensors="pt",
|
278 |
padding=True,
|
279 |
).to("cuda")
|
|
|
280 |
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
281 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
|
|
282 |
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
283 |
thread.start()
|
|
|
284 |
buffer = ""
|
285 |
yield progress_bar_html("Processing with Qwen2VL OCR")
|
286 |
for new_text in streamer:
|
|
|
289 |
time.sleep(0.01)
|
290 |
yield buffer
|
291 |
|
292 |
+
# Gradio Interface
|
|
|
|
|
293 |
examples = [
|
294 |
+
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
295 |
+
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/2.jpeg"]}],
|
296 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
297 |
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
|
298 |
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
299 |
+
[{"text": "@video-infer Explain what is happening in this video?", "files": ["examples/oreo.mp4"]}],
|
300 |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
301 |
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
|
302 |
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
303 |
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
304 |
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
305 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
|
|
306 |
]
|
307 |
|
308 |
demo = gr.ChatInterface(
|
309 |
fn=model_inference,
|
310 |
+
description="# **Multimodal OCR `@RolmOCR, @aya-vision for image, @video-infer for video`**",
|
311 |
examples=examples,
|
312 |
textbox=gr.MultimodalTextbox(
|
313 |
label="Query Input",
|
314 |
file_types=["image", "video"],
|
315 |
file_count="multiple",
|
316 |
+
placeholder="Tag @aya-vision for Aya‑Vision, @video-infer for video, for RolmOCR, or leave blank for default Qwen2VL OCR"
|
317 |
),
|
318 |
stop_btn="Stop Generation",
|
319 |
multimodal=True,
|