Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,14 +11,13 @@ from transformers import (
|
|
11 |
Qwen2VLForConditionalGeneration,
|
12 |
AutoProcessor,
|
13 |
TextIteratorStreamer,
|
14 |
-
AutoModelForImageTextToText,
|
15 |
)
|
16 |
from transformers import Qwen2_5_VLForConditionalGeneration
|
17 |
|
18 |
# ---------------------------
|
19 |
# Helper Functions
|
20 |
# ---------------------------
|
21 |
-
def progress_bar_html(label: str, primary_color: str = "#
|
22 |
"""
|
23 |
Returns an HTML snippet for a thin animated progress bar with a label.
|
24 |
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
|
@@ -65,7 +64,7 @@ def downsample_video(video_path):
|
|
65 |
|
66 |
# Model and Processor Setup
|
67 |
# Qwen2VL OCR (default branch)
|
68 |
-
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
69 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
70 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
71 |
QV_MODEL_ID,
|
@@ -73,13 +72,6 @@ qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
73 |
torch_dtype=torch.float16
|
74 |
).to("cuda").eval()
|
75 |
|
76 |
-
# Aya-Vision branch (for @aya-vision and @video-infer)
|
77 |
-
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
|
78 |
-
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
|
79 |
-
aya_model = AutoModelForImageTextToText.from_pretrained(
|
80 |
-
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
81 |
-
)
|
82 |
-
|
83 |
# RolmOCR branch (@RolmOCR)
|
84 |
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
85 |
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
@@ -95,93 +87,6 @@ def model_inference(input_dict, history):
|
|
95 |
text = input_dict["text"].strip()
|
96 |
files = input_dict.get("files", [])
|
97 |
|
98 |
-
# ---------------------------
|
99 |
-
# Aya-Vision Video Inference (@video-infer)
|
100 |
-
# ---------------------------
|
101 |
-
if text.lower().startswith("@video-infer"):
|
102 |
-
prompt = text[len("@video-infer"):].strip()
|
103 |
-
if not files:
|
104 |
-
yield "Error: Please provide a video for the @video-infer feature."
|
105 |
-
return
|
106 |
-
video_path = files[0]
|
107 |
-
frames = downsample_video(video_path)
|
108 |
-
if not frames:
|
109 |
-
yield "Error: Could not extract frames from the video."
|
110 |
-
return
|
111 |
-
# Build the message with the text prompt followed by each frame (with timestamp label).
|
112 |
-
content_list = [{"type": "text", "text": prompt}]
|
113 |
-
for frame, timestamp in frames:
|
114 |
-
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
|
115 |
-
content_list.append({"type": "image", "image": frame})
|
116 |
-
messages = [{"role": "user", "content": content_list}]
|
117 |
-
inputs = aya_processor.apply_chat_template(
|
118 |
-
messages,
|
119 |
-
padding=True,
|
120 |
-
add_generation_prompt=True,
|
121 |
-
tokenize=True,
|
122 |
-
return_dict=True,
|
123 |
-
return_tensors="pt"
|
124 |
-
).to(aya_model.device)
|
125 |
-
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
|
126 |
-
generation_kwargs = dict(
|
127 |
-
inputs,
|
128 |
-
streamer=streamer,
|
129 |
-
max_new_tokens=1024,
|
130 |
-
do_sample=True,
|
131 |
-
temperature=0.3
|
132 |
-
)
|
133 |
-
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
|
134 |
-
thread.start()
|
135 |
-
buffer = ""
|
136 |
-
yield progress_bar_html("Processing video with Aya-Vision-8b")
|
137 |
-
for new_text in streamer:
|
138 |
-
buffer += new_text
|
139 |
-
buffer = buffer.replace("<|im_end|>", "")
|
140 |
-
time.sleep(0.01)
|
141 |
-
yield buffer
|
142 |
-
return
|
143 |
-
|
144 |
-
# Aya-Vision Image Inference (@aya-vision)
|
145 |
-
if text.lower().startswith("@aya-vision"):
|
146 |
-
text_prompt = text[len("@aya-vision"):].strip()
|
147 |
-
if not files:
|
148 |
-
yield "Error: Please provide an image for the @aya-vision feature."
|
149 |
-
return
|
150 |
-
image = load_image(files[0])
|
151 |
-
yield progress_bar_html("Processing with Aya-Vision-8b")
|
152 |
-
messages = [{
|
153 |
-
"role": "user",
|
154 |
-
"content": [
|
155 |
-
{"type": "image", "image": image},
|
156 |
-
{"type": "text", "text": text_prompt},
|
157 |
-
],
|
158 |
-
}]
|
159 |
-
inputs = aya_processor.apply_chat_template(
|
160 |
-
messages,
|
161 |
-
padding=True,
|
162 |
-
add_generation_prompt=True,
|
163 |
-
tokenize=True,
|
164 |
-
return_dict=True,
|
165 |
-
return_tensors="pt"
|
166 |
-
).to(aya_model.device)
|
167 |
-
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
|
168 |
-
generation_kwargs = dict(
|
169 |
-
inputs,
|
170 |
-
streamer=streamer,
|
171 |
-
max_new_tokens=1024,
|
172 |
-
do_sample=True,
|
173 |
-
temperature=0.3
|
174 |
-
)
|
175 |
-
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
|
176 |
-
thread.start()
|
177 |
-
buffer = ""
|
178 |
-
for new_text in streamer:
|
179 |
-
buffer += new_text
|
180 |
-
buffer = buffer.replace("<|im_end|>", "")
|
181 |
-
time.sleep(0.01)
|
182 |
-
yield buffer
|
183 |
-
return
|
184 |
-
|
185 |
# RolmOCR Inference (@RolmOCR)
|
186 |
if text.lower().startswith("@rolmocr"):
|
187 |
# Remove the tag from the query.
|
@@ -239,14 +144,14 @@ def model_inference(input_dict, history):
|
|
239 |
thread.start()
|
240 |
buffer = ""
|
241 |
# Use a different color scheme for RolmOCR (purple-themed).
|
242 |
-
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)"
|
243 |
for new_text in streamer:
|
244 |
buffer += new_text
|
245 |
buffer = buffer.replace("<|im_end|>", "")
|
246 |
time.sleep(0.01)
|
247 |
yield buffer
|
248 |
return
|
249 |
-
|
250 |
# Default Inference: Qwen2VL OCR
|
251 |
# Process files: support multiple images.
|
252 |
if len(files) > 1:
|
@@ -294,26 +199,18 @@ examples = [
|
|
294 |
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
295 |
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
|
296 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
297 |
-
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
|
298 |
-
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
299 |
-
[{"text": "@video-infer Explain what is happening in this video briefly by understanding", "files": ["examples/oreo.mp4"]}],
|
300 |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
301 |
-
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
|
302 |
-
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
303 |
-
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
|
304 |
-
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
305 |
-
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
306 |
]
|
307 |
|
308 |
demo = gr.ChatInterface(
|
309 |
fn=model_inference,
|
310 |
-
description="# **Multimodal OCR `@RolmOCR
|
311 |
examples=examples,
|
312 |
textbox=gr.MultimodalTextbox(
|
313 |
label="Query Input",
|
314 |
file_types=["image", "video"],
|
315 |
file_count="multiple",
|
316 |
-
placeholder="Use tag @RolmOCR
|
317 |
),
|
318 |
stop_btn="Stop Generation",
|
319 |
multimodal=True,
|
|
|
11 |
Qwen2VLForConditionalGeneration,
|
12 |
AutoProcessor,
|
13 |
TextIteratorStreamer,
|
|
|
14 |
)
|
15 |
from transformers import Qwen2_5_VLForConditionalGeneration
|
16 |
|
17 |
# ---------------------------
|
18 |
# Helper Functions
|
19 |
# ---------------------------
|
20 |
+
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
21 |
"""
|
22 |
Returns an HTML snippet for a thin animated progress bar with a label.
|
23 |
Colors can be customized; default colors are used for Qwen2VL/Aya‑Vision.
|
|
|
64 |
|
65 |
# Model and Processor Setup
|
66 |
# Qwen2VL OCR (default branch)
|
67 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # [or] prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
|
68 |
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
69 |
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
70 |
QV_MODEL_ID,
|
|
|
72 |
torch_dtype=torch.float16
|
73 |
).to("cuda").eval()
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
# RolmOCR branch (@RolmOCR)
|
76 |
ROLMOCR_MODEL_ID = "reducto/RolmOCR"
|
77 |
rolmocr_processor = AutoProcessor.from_pretrained(ROLMOCR_MODEL_ID, trust_remote_code=True)
|
|
|
87 |
text = input_dict["text"].strip()
|
88 |
files = input_dict.get("files", [])
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
# RolmOCR Inference (@RolmOCR)
|
91 |
if text.lower().startswith("@rolmocr"):
|
92 |
# Remove the tag from the query.
|
|
|
144 |
thread.start()
|
145 |
buffer = ""
|
146 |
# Use a different color scheme for RolmOCR (purple-themed).
|
147 |
+
yield progress_bar_html("Processing with Qwen2.5VL (RolmOCR)")
|
148 |
for new_text in streamer:
|
149 |
buffer += new_text
|
150 |
buffer = buffer.replace("<|im_end|>", "")
|
151 |
time.sleep(0.01)
|
152 |
yield buffer
|
153 |
return
|
154 |
+
|
155 |
# Default Inference: Qwen2VL OCR
|
156 |
# Process files: support multiple images.
|
157 |
if len(files) > 1:
|
|
|
199 |
[{"text": "@RolmOCR OCR the Text in the Image", "files": ["rolm/1.jpeg"]}],
|
200 |
[{"text": "@RolmOCR OCR the Image", "files": ["rolm/3.jpeg"]}],
|
201 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
|
|
|
|
|
|
202 |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
|
|
|
|
|
|
|
|
|
|
203 |
]
|
204 |
|
205 |
demo = gr.ChatInterface(
|
206 |
fn=model_inference,
|
207 |
+
description="# **Multimodal OCR `@RolmOCR` and Default Qwen2VL OCR**",
|
208 |
examples=examples,
|
209 |
textbox=gr.MultimodalTextbox(
|
210 |
label="Query Input",
|
211 |
file_types=["image", "video"],
|
212 |
file_count="multiple",
|
213 |
+
placeholder="Use tag @RolmOCR for RolmOCR, or leave blank for default Qwen2VL OCR"
|
214 |
),
|
215 |
stop_btn="Stop Generation",
|
216 |
multimodal=True,
|