Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import edge_tts | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| ) | |
| from transformers.image_utils import load_image | |
| # Constants for text generation | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load text-only model and tokenizer (Pocket Llama) | |
| model_id = "prithivMLmods/Pocket-Llama2-3.2-3B-Instruct" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| model.eval() | |
| # Load multimodal processor and model (Callisto OCR3) | |
| MODEL_ID = "prithivMLmods/Callisto-OCR3-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| # Edge TTS voices mapping for new tags. | |
| TTS_VOICE_MAP = { | |
| "@jennyneural": "en-US-JennyNeural", | |
| "@guyneural": "en-US-GuyNeural", | |
| "@palomaneural": "es-US-PalomaNeural", | |
| "@alonsoneural": "es-US-AlonsoNeural", | |
| "@MadhurNeural": "hi-IN-MadhurNeural" | |
| } | |
| async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
| """ | |
| Convert text to speech using Edge TTS and save as MP3. | |
| """ | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_file) | |
| return output_file | |
| def clean_chat_history(chat_history): | |
| """ | |
| Filter out any chat entries whose "content" is not a string. | |
| This helps prevent errors when concatenating previous messages. | |
| """ | |
| cleaned = [] | |
| for msg in chat_history: | |
| if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
| cleaned.append(msg) | |
| return cleaned | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to 10 evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| # Sample 10 evenly spaced frames. | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def progress_bar_html(label: str) -> str: | |
| """ | |
| Returns an HTML snippet for a thin progress bar with a label. | |
| The progress bar is styled as a light cyan animated bar. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| def generate(input_dict: dict, chat_history: list[dict], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2): | |
| """ | |
| Generates chatbot responses with support for multimodal input, video processing, | |
| and Edge TTS when using the new tags @JennyNeural or @GuyNeural. | |
| Special command: | |
| - "@video-infer": triggers video processing using Callisto OCR3. | |
| """ | |
| text = input_dict["text"] | |
| files = input_dict.get("files", []) | |
| lower_text = text.strip().lower() | |
| # Check for TTS tag in the prompt. | |
| tts_voice = None | |
| for tag, voice in TTS_VOICE_MAP.items(): | |
| if lower_text.startswith(tag): | |
| tts_voice = voice | |
| text = text[len(tag):].strip() # Remove the tag from the prompt. | |
| break | |
| # Branch for video processing with Callisto OCR3. | |
| if lower_text.startswith("@video-infer"): | |
| prompt = text[len("@video-infer"):].strip() if not tts_voice else text | |
| if files: | |
| # Assume the first file is a video. | |
| video_path = files[0] | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt}]} | |
| ] | |
| # Append each frame with its timestamp. | |
| for frame in frames: | |
| image, timestamp = frame | |
| image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
| image.save(image_path) | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "url": image_path}) | |
| else: | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt}]} | |
| ] | |
| # Enable truncation to avoid token/feature mismatch. | |
| inputs = processor.apply_chat_template( | |
| messages, | |
| tokenize=True, | |
| add_generation_prompt=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| truncation=True, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing video with Callisto OCR3") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # Multimodal processing when files are provided. | |
| if files: | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| # Enable truncation explicitly here as well. | |
| inputs = processor( | |
| text=[prompt_full], | |
| images=images, | |
| return_tensors="pt", | |
| padding=True, | |
| truncation=True, | |
| max_length=MAX_INPUT_TOKEN_LENGTH | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing image with Callisto OCR3") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| # Normal text conversation processing with Pocket Llama. | |
| conversation = clean_chat_history(chat_history) | |
| conversation.append({"role": "user", "content": text}) | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "num_beams": 1, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| t = Thread(target=model.generate, kwargs=generation_kwargs) | |
| t.start() | |
| outputs = [] | |
| yield progress_bar_html("Processing With Pocket Llama 3B") | |
| for new_text in streamer: | |
| outputs.append(new_text) | |
| yield "".join(outputs) | |
| final_response = "".join(outputs) | |
| yield final_response | |
| # If a TTS voice was specified, convert the final response to speech. | |
| if tts_voice: | |
| output_file = asyncio.run(text_to_speech(final_response, tts_voice)) | |
| yield gr.Audio(output_file, autoplay=True) | |
| # Create the Gradio ChatInterface with the custom CSS applied | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| examples=[ | |
| ["Write the code that converts temperatures between Celsius and Fahrenheit in short"], | |
| [{"text": "Create a short story based on the image.", "files": ["examples/1.jpg"]}], | |
| ["@JennyNeural Who was Nikola Tesla and what were his contributions?"], | |
| [{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}], | |
| [{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}], | |
| ["@GuyNeural Explain how rainbows are formed."], | |
| ["@PalomaNeural What is the water cycle?"], | |
| ["@AlonsoNeural Who was Pablo Picasso and why is he famous?"], | |
| ["@MadhurNeural What are the key principles of Ayurveda?"] | |
| ], | |
| cache_examples=False, | |
| description="# **Pocket Llama**", | |
| type="messages", | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(share=True) |