Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from transformers import AutoImageProcessor | |
| from transformers import SiglipForImageClassification | |
| from transformers.image_utils import load_image | |
| from PIL import Image | |
| import torch | |
| # Load model and processor | |
| model_name = "prithivMLmods/Fashion-Mnist-SigLIP2" | |
| model = SiglipForImageClassification.from_pretrained(model_name) | |
| processor = AutoImageProcessor.from_pretrained(model_name) | |
| def fashion_mnist_classification(image): | |
| """Predicts fashion category for an image.""" | |
| image = Image.fromarray(image).convert("RGB") | |
| inputs = processor(images=image, return_tensors="pt") | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| logits = outputs.logits | |
| probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() | |
| labels = { | |
| "0": "T-shirt / top", "1": "Trouser", "2": "Pullover", "3": "Dress", "4": "Coat", | |
| "5": "Sandal", "6": "Shirt", "7": "Sneaker", "8": "Bag", "9": "Ankle boot" | |
| } | |
| predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} | |
| return predictions | |
| # Create Gradio interface | |
| iface = gr.Interface( | |
| fn=fashion_mnist_classification, | |
| inputs=gr.Image(type="numpy"), | |
| outputs=gr.Label(label="Prediction Scores"), | |
| title="Fashion MNIST Classification Labels", | |
| description="Upload an image to classify it into one of the 10 Fashion-MNIST categories." | |
| ) | |
| # Launch the app | |
| if __name__ == "__main__": | |
| iface.launch() |