File size: 15,589 Bytes
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c54dd0
 
892d31d
 
 
 
 
 
 
 
 
 
 
 
0a304df
e5db41a
 
0a304df
 
892d31d
 
0a304df
892d31d
0a304df
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fcc30e
892d31d
 
 
 
 
6fcc30e
892d31d
 
5c54dd0
892d31d
 
e5db41a
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fcc30e
892d31d
 
 
 
 
6fcc30e
892d31d
 
5c54dd0
892d31d
 
e5db41a
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a649be3
892d31d
8f16cae
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02165c4
892d31d
f6b22da
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d7ef5c
892d31d
 
af7b591
3594349
892d31d
7d7ef5c
892d31d
 
 
5c54dd0
e5db41a
892d31d
 
1741310
892d31d
5c54dd0
 
e5db41a
6fcc30e
892d31d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c78324
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Vision-Matters-7B
MODEL_ID_M = "Yuting6/Vision-Matters-7B"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M, trust_remote_code=True,
    torch_dtype=torch.float16).to(device).eval()

# Load ViGaL-7B
MODEL_ID_X = "yunfeixie/ViGaL-7B"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X, trust_remote_code=True,
    torch_dtype=torch.float16).to(device).eval()

# Load prithivMLmods/WR30a-Deep-7B-0711
MODEL_ID_T = "prithivMLmods/WR30a-Deep-7B-0711"
processor_t = AutoProcessor.from_pretrained(MODEL_ID_T, trust_remote_code=True)
model_t = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_T, trust_remote_code=True,
    torch_dtype=torch.float16).to(device).eval()

# Load Visionary-R1
MODEL_ID_O = "maifoundations/Visionary-R1"
processor_o = AutoProcessor.from_pretrained(MODEL_ID_O, trust_remote_code=True)
model_o = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_O, trust_remote_code=True,
    torch_dtype=torch.float16).to(device).eval()

#-----------------------------subfolder-----------------------------#
# Load MonkeyOCR-pro-1.2B
MODEL_ID_W = "echo840/MonkeyOCR-pro-1.2B"
SUBFOLDER = "Recognition"
processor_w = AutoProcessor.from_pretrained(MODEL_ID_W, trust_remote_code=True, subfolder=SUBFOLDER)
model_w = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_W, trust_remote_code=True,
    subfolder=SUBFOLDER,
    torch_dtype=torch.float16).to(device).eval()
#-----------------------------subfolder-----------------------------#

# Function to downsample video frames
def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

# Function to generate text responses based on image input
@spaces.GPU
def generate_image(model_name: str,
                   text: str,
                   image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if model_name == "Vision-Matters-7B":
        processor = processor_m
        model = model_m
    elif model_name == "ViGaL-7B":
        processor = processor_x
        model = model_x
    elif model_name == "Visionary-R1-3B":
        processor = processor_o
        model = model_o
    elif model_name == "WR30a-Deep-7B-0711":
        processor = processor_t
        model = model_t
    elif model_name == "MonkeyOCR-pro-1.2B":
        processor = processor_w
        model = model_w
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image.", "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages,
                                                tokenize=False,
                                                add_generation_prompt=True)
    inputs = processor(text=[prompt_full],
                       images=[image],
                       return_tensors="pt",
                       padding=True,
                       truncation=False,
                       max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
    streamer = TextIteratorStreamer(processor,
                                    skip_prompt=True,
                                    skip_special_tokens=True)
    generation_kwargs = {
        **inputs, "streamer": streamer,
        "max_new_tokens": max_new_tokens
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer, buffer

# Function to generate text responses based on video input
@spaces.GPU
def generate_video(model_name: str,
                   text: str,
                   video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if model_name == "Vision-Matters-7B":
        processor = processor_m
        model = model_m
    elif model_name == "ViGaL-7B":
        processor = processor_x
        model = model_x
    elif model_name == "Visionary-R1-3B":
        processor = processor_o
        model = model_o
    elif model_name == "WR30a-Deep-7B-0711":
        processor = processor_t
        model = model_t
    elif model_name == "MonkeyOCR-pro-1.2B":
        processor = processor_w
        model = model_w
    else:
        yield "Invalid model selected.", "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video.", "Please upload a video."
        return

    frames = downsample_video(video_path)
    messages = [{
        "role": "system",
        "content": [{"type": "text", "text": "You are a helpful assistant."}]
    }, {
        "role": "user",
        "content": [{"type": "text", "text": text}]
    }]
    for frame in frames:
        image, timestamp = frame
        messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
        messages[1]["content"].append({"type": "image", "image": image})
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH).to(device)
    streamer = TextIteratorStreamer(processor,
                                    skip_prompt=True,
                                    skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer, buffer

# Define examples for image and video inference
image_examples = [
    ["Extract the content.", "images/7.png"],
    ["Solve the problem to find the value.", "images/1.jpg"],
    ["Explain the scene.", "images/6.JPG"],
    ["Solve the problem step by step.", "images/2.jpg"],
    ["Find the value of 'X'.", "images/3.jpg"],
    ["Simplify the expression.", "images/4.jpg"],
    ["Solve for the value.", "images/5.png"]
]

video_examples = [
    ["Explain the video in detail.", "videos/1.mp4"],
    ["Explain the video in detail.", "videos/2.mp4"]
]

# Added CSS to style the output area as a "Canvas"
css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
.canvas-output {
    border: 2px solid #4682B4;
    border-radius: 10px;
    padding: 20px;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown(
        "# **[Multimodal VLMs [OCR | VQA]](https://huggingface.co/collections/prithivMLmods/multimodal-implementations-67c9982ea04b39f0608badb0)**"
    )
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(
                        label="Query Input",
                        placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit",
                                             elem_classes="submit-btn")
                    gr.Examples(examples=image_examples,
                                inputs=[image_query, image_upload])
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(
                        label="Query Input",
                        placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit",
                                             elem_classes="submit-btn")
                    gr.Examples(examples=video_examples,
                                inputs=[video_query, video_upload])

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens",
                                           minimum=1,
                                           maximum=MAX_MAX_NEW_TOKENS,
                                           step=1,
                                           value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature",
                                        minimum=0.1,
                                        maximum=4.0,
                                        step=0.1,
                                        value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)",
                                  minimum=0.05,
                                  maximum=1.0,
                                  step=0.05,
                                  value=0.9)
                top_k = gr.Slider(label="Top-k",
                                  minimum=1,
                                  maximum=1000,
                                  step=1,
                                  value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty",
                                               minimum=1.0,
                                               maximum=2.0,
                                               step=0.05,
                                               value=1.2)

        with gr.Column():
            with gr.Column(elem_classes="canvas-output"):
                gr.Markdown("## Output")
                output = gr.Textbox(label="Raw Output Stream",
                                    interactive=False,
                                    lines=2, show_copy_button=True)
                with gr.Accordion("(Result.md)", open=False):
                    markdown_output = gr.Markdown(
                        label="markup.md")
                #download_btn = gr.Button("Download Result.md")

            model_choice = gr.Radio(choices=[
                 "Vision-Matters-7B", "WR30a-Deep-7B-0711",
                 "ViGaL-7B", "MonkeyOCR-pro-1.2B", "Visionary-R1-3B"
            ],
                                    label="Select Model",
                                    value="Vision-Matters-7B")

            gr.Markdown("**Model Info 💻** | [Report Bug](https://huggingface.co/spaces/prithivMLmods/Multimodal-VLMs-5x/discussions)")         
            gr.Markdown("> [WR30a-Deep-7B-0711](https://huggingface.co/prithivMLmods/WR30a-Deep-7B-0711): wr30a-deep-7b-0711 model is a fine-tuned version of qwen2.5-vl-7b-instruct, optimized for image captioning, visual analysis, and image reasoning. Built on top of the qwen2.5-vl architecture, this experimental model enhances visual comprehension capabilities with focused training on 1,500k image pairs for superior image understanding.")
            gr.Markdown("> [MonkeyOCR-pro-1.2B](https://huggingface.co/echo840/MonkeyOCR-pro-1.2B): MonkeyOCR adopts a structure-recognition-relation (SRR) triplet paradigm, which simplifies the multi-tool pipeline of modular approaches while avoiding the inefficiency of using large multimodal models for full-page document processing.")
            gr.Markdown("> [Vision Matters 7B](https://huggingface.co/Yuting6/Vision-Matters-7B): vision-matters is a simple visual perturbation framework that can be easily integrated into existing post-training pipelines including sft, dpo, and grpo. our findings highlight the critical role of visual perturbation: better reasoning begins with better seeing.")
            gr.Markdown("> [ViGaL 7B](https://huggingface.co/yunfeixie/ViGaL-7B): vigal-7b shows that training a 7b mllm on simple games like snake using reinforcement learning boosts performance on benchmarks like mathvista and mmmu without needing worked solutions or diagrams indicating transferable reasoning skills.")
            gr.Markdown("> [Visionary-R1](https://huggingface.co/maifoundations/Visionary-R1): visionary-r1 is a novel framework for training visual language models (vlms) to perform robust visual reasoning using reinforcement learning (rl). unlike traditional approaches that rely heavily on (sft) or (cot) annotations, visionary-r1 leverages only visual question-answer pairs and rl, making the process more scalable and accessible.")
            gr.Markdown(">⚠️note: all the models in space are not guaranteed to perform well in video inference use cases.")  

    # Define the submit button actions
    image_submit.click(fn=generate_image,
                       inputs=[
                           model_choice, image_query, image_upload,
                           max_new_tokens, temperature, top_p, top_k,
                           repetition_penalty
                       ],
                       outputs=[output, markdown_output])
    video_submit.click(fn=generate_video,
                       inputs=[
                           model_choice, video_query, video_upload,
                           max_new_tokens, temperature, top_p, top_k,
                           repetition_penalty
                       ],
                       outputs=[output, markdown_output])

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False, show_error=True)