File size: 15,334 Bytes
0c1b8f7
a01646a
 
 
 
 
b06a87f
a01646a
0c1b8f7
fca22b9
0c1b8f7
a01646a
 
32d8e74
696cd59
a01646a
 
 
 
 
 
 
 
fca22b9
d5fdad9
 
40dd3a7
 
 
 
 
 
6db128e
fca22b9
 
 
 
 
 
 
 
d6b5ac6
40dd3a7
 
 
 
 
4fa981c
6db128e
 
 
 
 
 
 
d7f29b6
7f471f2
b06a87f
 
 
 
83a0174
af0738e
 
 
 
40dd3a7
 
 
 
 
83a0174
af0738e
a9cff5e
af0738e
a01646a
 
 
af0738e
a01646a
af0738e
a01646a
 
 
 
 
 
 
 
af0738e
6c3e861
 
 
af0738e
a01646a
 
 
af0738e
a01646a
 
 
2b1f8da
 
a01646a
af0738e
a01646a
 
 
 
2b1f8da
 
 
 
 
4fa981c
 
1392a59
c2df5bc
4fa981c
 
 
c2df5bc
 
 
4fa981c
 
 
c2df5bc
 
 
4fa981c
 
 
 
696cd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a01646a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0738e
a01646a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0738e
a01646a
 
 
 
 
af0738e
43f0687
 
 
 
 
 
a01646a
 
 
48a6837
40dd3a7
 
 
 
 
 
 
 
 
 
2b1f8da
6c3e861
 
 
696cd59
40dd3a7
fca22b9
a592e13
696cd59
40dd3a7
696cd59
 
4fa981c
a01646a
4fa981c
4f97d6f
 
 
 
 
 
 
 
 
 
 
 
 
a01646a
696cd59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b1f870
696cd59
 
 
40dd3a7
696cd59
ecce109
 
 
 
40dd3a7
 
 
 
 
 
 
 
 
 
a01646a
 
 
 
 
 
 
40dd3a7
 
 
 
 
 
 
696cd59
 
40dd3a7
 
 
 
 
4fa981c
40dd3a7
 
 
4f97d6f
4fa981c
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fa981c
 
af0738e
696cd59
40dd3a7
af0738e
4fa981c
af0738e
4fa981c
40dd3a7
3fb8098
40dd3a7
ea9ba29
fca22b9
0ba4242
fca22b9
40dd3a7
ea9ba29
40dd3a7
ea9ba29
 
0ba4242
 
6294196
feb7410
6294196
feb7410
c55efc0
40dd3a7
6db128e
 
40dd3a7
0ba4242
fca22b9
40dd3a7
03c4db3
0ba4242
696cd59
fca22b9
 
0ba4242
47473ae
0c1b8f7
1c2016e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import cv2

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load text-only model and tokenizer
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    This helps prevent errors when concatenating previous messages.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

# Environment variables and parameters for Stable Diffusion XL
# Use : SG161222/RealVisXL_V4.0_Lightning or SG161222/RealVisXL_V5.0_Lightning
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")  # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # For batched image generation

# Load the SDXL pipeline
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)

# Ensure that the text encoder is in half-precision if using CUDA.
if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()

# Optional: compile the model for speedup if enabled
if USE_TORCH_COMPILE:
    sd_pipe.compile()

# Optional: offload parts of the model to CPU if needed
if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

MAX_SEED = np.iinfo(np.int32).max

def save_image(img: Image.Image) -> str:
    """Save a PIL image with a unique filename and return the path."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a dark red animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    """Generate images using the SDXL pipeline."""
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    # Process in batches
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        # Wrap the pipeline call in autocast if using CUDA
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input, TTS, and image generation.
    Special commands:
      - "@tts1" or "@tts2": triggers text-to-speech.
      - "@image": triggers image generation using the SDXL pipeline.
      - "@qwen2vl-video": triggers video processing using Qwen2VL.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])
    lower_text = text.strip().lower()

    # Branch for image generation.
    if lower_text.startswith("@image"):
        # Remove the "@image" tag and use the rest as prompt
        prompt = text[len("@image"):].strip()
        yield progress_bar_html("Generating Image")
        image_paths, used_seed = generate_image_fn(
            prompt=prompt,
            negative_prompt="",
            use_negative_prompt=False,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            num_inference_steps=25,
            randomize_seed=True,
            use_resolution_binning=True,
            num_images=1,
        )
        yield gr.Image(image_paths[0])
        return

    # New branch for video processing with Qwen2VL.
    if lower_text.startswith("@qwen2vl-video"):
        prompt = text[len("@qwen2vl-video"):].strip()
        if files:
            # Assume the first file is a video.
            video_path = files[0]
            frames = downsample_video(video_path)
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
            # Append each frame with its timestamp.
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
        inputs = processor.apply_chat_template(
            messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt"
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Qwen2VL")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        return

    # Determine if TTS is requested.
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})

    if files:
        if len(files) > 1:
            images = [load_image(image) for image in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Thinking...")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        yield progress_bar_html("Processing with Qwen2VL Ocr")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response
        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        [{"text": "@qwen2vl-video Describe the Ad", "files": ["examples/coca.mp4"]}],
        [{"text": "@qwen2vl-video Summarize the event in video", "files": ["examples/sky.mp4"]}],
        [{"text": "@qwen2vl-video Describe the video", "files": ["examples/Missing.mp4"]}],
        ["@image Chocolate dripping from a donut"],
        ["Python Program for Array Rotation"],
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["@tts2 What causes rainbows to form?"],
    ],
    cache_examples=False,
    type="messages",
    description="# **QwQ Edge `@qwen2vl-video 'prompt..', @image, @tts1`**",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="‎ @tts1, @tts2-voices, @image for image gen, @qwen2vl-video for video, default [text, vision]"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)