Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,120 Bytes
ced6a25 db296ae eb521b9 db296ae ced6a25 db296ae ced6a25 db296ae eb521b9 ced6a25 eb521b9 ced6a25 db296ae eb521b9 ced6a25 c14ebf1 ced6a25 f5fe2c2 4440635 39e341b 1a72361 d8d42ce ced6a25 af6ede9 05011af ced6a25 f5fe2c2 4440635 25b3e49 39e341b 1a72361 39e341b ced6a25 af6ede9 ced6a25 05011af ced6a25 db296ae ced6a25 f00c8a8 ced6a25 2fae72c f347e5d 46c11b4 cbe7097 46c11b4 beedc41 ced6a25 942cc37 ced6a25 2241b5e ced6a25 b7c80f3 ced6a25 ba3884a d254c5e cbde23c 1a72361 2372cf3 d254c5e 39e341b 4440635 d254c5e e5f58cd ced6a25 a52c05b ced6a25 f8a4c0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO", # [transformer weights extracted from: Phr00t/Qwen-Image-Edit-Rapid-AIO]
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'
),
torch_dtype=dtype
).to(device)
pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime",
weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors",
adapter_name="anime")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors",
adapter_name="multiple-angles")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration",
weight_name="移除光影.safetensors",
adapter_name="light-restoration")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight",
weight_name="Qwen-Edit-Relight.safetensors",
adapter_name="relight")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting",
weight_name="多角度灯光-251116.safetensors",
adapter_name="multi-angle-lighting")
pipe.load_lora_weights("tlennon-ie/qwen-edit-skin",
weight_name="qwen-edit-skin_1.1_000002750.safetensors",
adapter_name="edit-skin")
pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509",
weight_name="next-scene_lora-v2-3000.safetensors",
adapter_name="next-scene")
pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA",
weight_name="qwen-edit-enhance_64-v3_000001000.safetensors",
adapter_name="upscale-image")
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU(duration=30)
def infer(
input_image,
prompt,
lora_adapter,
seed,
randomize_seed,
guidance_scale,
steps,
progress=gr.Progress(track_tqdm=True)
):
if input_image is None:
raise gr.Error("Please upload an image to edit.")
if lora_adapter == "Photo-to-Anime":
pipe.set_adapters(["anime"], adapter_weights=[1.0])
elif lora_adapter == "Multiple-Angles":
pipe.set_adapters(["multiple-angles"], adapter_weights=[1.0])
elif lora_adapter == "Light-Restoration":
pipe.set_adapters(["light-restoration"], adapter_weights=[1.0])
elif lora_adapter == "Relight":
pipe.set_adapters(["relight"], adapter_weights=[1.0])
elif lora_adapter == "Multi-Angle-Lighting":
pipe.set_adapters(["multi-angle-lighting"], adapter_weights=[1.0])
elif lora_adapter == "Edit-Skin":
pipe.set_adapters(["edit-skin"], adapter_weights=[1.0])
elif lora_adapter == "Next-Scene":
pipe.set_adapters(["next-scene"], adapter_weights=[1.0])
elif lora_adapter == "Upscale-Image":
pipe.set_adapters(["upscale-image"], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
original_image = input_image.convert("RGB")
# Use the new function to update dimensions
width, height = update_dimensions_on_upload(original_image)
result = pipe(
image=original_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
@spaces.GPU(duration=30)
def infer_example(input_image, prompt, lora_adapter):
input_pil = input_image.convert("RGB")
guidance_scale = 1.0
steps = 4
result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps)
return result, seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast**", elem_id="main-title")
gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.")
with gr.Row(equal_height=True):
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height=290)
prompt = gr.Text(
label="Edit Prompt",
show_label=True,
placeholder="e.g., transform into anime..",
)
run_button = gr.Button("Edit Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"],
value="Photo-to-Anime"
)
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
gr.Examples(
examples=[
["examples/1.jpg", "Transform into anime.", "Photo-to-Anime"],
["examples/5.jpg", "Remove shadows and relight the image using soft lighting.", "Light-Restoration"],
["examples/4.jpg", "Use a subtle golden-hour filter with smooth light diffusion.", "Relight"],
["examples/2.jpeg", "Rotate the camera 45 degrees to the left.", "Multiple-Angles"],
["examples/7.jpg", "Light source from the Right Rear", "Multi-Angle-Lighting"],
["examples/10.jpeg", "Upscale the image.", "Upscale-Image"],
["examples/7.jpg", "Light source from the Below", "Multi-Angle-Lighting"],
["examples/2.jpeg", "Switch the camera to a top-down right corner view.", "Multiple-Angles"],
["examples/9.jpg", "The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth.", "Next-Scene"],
["examples/8.jpg", "Make the subjects skin details more prominent and natural.", "Edit-Skin"],
["examples/6.jpg", "Switch the camera to a bottom-up view.", "Multiple-Angles"],
["examples/6.jpg", "Rotate the camera 180 degrees upside down.", "Multiple-Angles"],
["examples/4.jpg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"],
["examples/4.jpg", "Switch the camera to a top-down view.", "Multiple-Angles"],
["examples/4.jpg", "Switch the camera to a wide-angle lens.", "Multiple-Angles"],
],
inputs=[input_image, prompt, lora_adapter],
outputs=[output_image, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
run_button.click(
fn=infer,
inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
outputs=[output_image, seed]
)
demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |