File size: 13,120 Bytes
ced6a25
 
 
 
 
 
 
 
 
 
 
db296ae
 
 
 
 
 
 
 
 
 
 
 
 
eb521b9
 
db296ae
ced6a25
 
 
 
db296ae
ced6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db296ae
 
eb521b9
 
 
 
 
 
ced6a25
 
 
 
 
eb521b9
 
 
 
ced6a25
 
db296ae
eb521b9
 
 
 
 
 
 
 
 
 
 
 
 
ced6a25
 
 
 
 
 
 
 
 
 
 
 
c14ebf1
ced6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fe2c2
 
 
4440635
 
 
39e341b
 
 
1a72361
 
 
d8d42ce
ced6a25
 
 
 
af6ede9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05011af
ced6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fe2c2
 
4440635
25b3e49
39e341b
 
1a72361
 
39e341b
ced6a25
 
 
 
 
 
 
af6ede9
 
 
ced6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
05011af
ced6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db296ae
ced6a25
 
f00c8a8
ced6a25
 
 
2fae72c
f347e5d
46c11b4
 
 
cbe7097
46c11b4
 
beedc41
ced6a25
 
942cc37
ced6a25
 
 
 
2241b5e
ced6a25
 
b7c80f3
ced6a25
 
 
 
 
 
 
 
 
ba3884a
d254c5e
cbde23c
1a72361
2372cf3
d254c5e
39e341b
4440635
d254c5e
 
e5f58cd
 
 
ced6a25
 
 
 
a52c05b
ced6a25
 
 
 
 
 
 
 
 
f8a4c0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )

steel_blue_theme = SteelBlueTheme()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
    print("current device:", torch.cuda.current_device())
    print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))

print("Using device:", device)

from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained(
    "Qwen/Qwen-Image-Edit-2509",
    transformer=QwenImageTransformer2DModel.from_pretrained(
        "linoyts/Qwen-Image-Edit-Rapid-AIO", # [transformer weights extracted from: Phr00t/Qwen-Image-Edit-Rapid-AIO]
        subfolder='transformer',
        torch_dtype=dtype,
        device_map='cuda'
    ),
    torch_dtype=dtype
).to(device)

pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime",
                       weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors",
                       adapter_name="anime")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles",
                       weight_name="镜头转换.safetensors",
                       adapter_name="multiple-angles")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration",
                       weight_name="移除光影.safetensors",
                       adapter_name="light-restoration")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight",
                       weight_name="Qwen-Edit-Relight.safetensors",
                       adapter_name="relight")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting",
                       weight_name="多角度灯光-251116.safetensors",
                       adapter_name="multi-angle-lighting")
pipe.load_lora_weights("tlennon-ie/qwen-edit-skin",
                       weight_name="qwen-edit-skin_1.1_000002750.safetensors",
                       adapter_name="edit-skin")
pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509",
                       weight_name="next-scene_lora-v2-3000.safetensors",
                       adapter_name="next-scene")
pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA",
                       weight_name="qwen-edit-enhance_64-v3_000001000.safetensors",
                       adapter_name="upscale-image")


pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
MAX_SEED = np.iinfo(np.int32).max

def update_dimensions_on_upload(image):
    if image is None:
        return 1024, 1024
    
    original_width, original_height = image.size
    
    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)
        
    # Ensure dimensions are multiples of 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8
    
    return new_width, new_height

@spaces.GPU(duration=30)
def infer(
    input_image,
    prompt,
    lora_adapter,
    seed,
    randomize_seed,
    guidance_scale,
    steps,
    progress=gr.Progress(track_tqdm=True)
):
    if input_image is None:
        raise gr.Error("Please upload an image to edit.")

    if lora_adapter == "Photo-to-Anime":
        pipe.set_adapters(["anime"], adapter_weights=[1.0])
    elif lora_adapter == "Multiple-Angles":
        pipe.set_adapters(["multiple-angles"], adapter_weights=[1.0])
    elif lora_adapter == "Light-Restoration":
        pipe.set_adapters(["light-restoration"], adapter_weights=[1.0])
    elif lora_adapter == "Relight":
        pipe.set_adapters(["relight"], adapter_weights=[1.0])
    elif lora_adapter == "Multi-Angle-Lighting":
        pipe.set_adapters(["multi-angle-lighting"], adapter_weights=[1.0])
    elif lora_adapter == "Edit-Skin":
        pipe.set_adapters(["edit-skin"], adapter_weights=[1.0])
    elif lora_adapter == "Next-Scene":
        pipe.set_adapters(["next-scene"], adapter_weights=[1.0])
    elif lora_adapter == "Upscale-Image":
        pipe.set_adapters(["upscale-image"], adapter_weights=[1.0])
        
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator(device=device).manual_seed(seed)
    negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"

    original_image = input_image.convert("RGB")
    
    # Use the new function to update dimensions
    width, height = update_dimensions_on_upload(original_image)

    result = pipe(
        image=original_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=steps,
        generator=generator,
        true_cfg_scale=guidance_scale,
    ).images[0]

    return result, seed

@spaces.GPU(duration=30)
def infer_example(input_image, prompt, lora_adapter):
    input_pil = input_image.convert("RGB")
    guidance_scale = 1.0
    steps = 4
    result, seed = infer(input_pil, prompt, lora_adapter, 0, True, guidance_scale, steps)
    return result, seed


css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
#main-title h1 {font-size: 2.1em !important;}
"""

with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# **Qwen-Image-Edit-2509-LoRAs-Fast**", elem_id="main-title")
        gr.Markdown("Perform diverse image edits using specialized [LoRA](https://huggingface.co/models?other=base_model:adapter:Qwen/Qwen-Image-Edit-2509) adapters for the [Qwen-Image-Edit](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) model.")

        with gr.Row(equal_height=True):
            with gr.Column():
                input_image = gr.Image(label="Upload Image", type="pil", height=290)
                
                prompt = gr.Text(
                    label="Edit Prompt",
                    show_label=True,
                    placeholder="e.g., transform into anime..",
                )

                run_button = gr.Button("Edit Image", variant="primary")

            with gr.Column():
                output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
                
                with gr.Row():
                    lora_adapter = gr.Dropdown(
                        label="Choose Editing Style",
                        choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"],
                        value="Photo-to-Anime"
                    )
                with gr.Accordion("Advanced Settings", open=False, visible=False):
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                    steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
        
        gr.Examples(
            examples=[
                ["examples/1.jpg", "Transform into anime.", "Photo-to-Anime"],
                ["examples/5.jpg", "Remove shadows and relight the image using soft lighting.", "Light-Restoration"],
                ["examples/4.jpg", "Use a subtle golden-hour filter with smooth light diffusion.", "Relight"],
                ["examples/2.jpeg", "Rotate the camera 45 degrees to the left.", "Multiple-Angles"],
                ["examples/7.jpg", "Light source from the Right Rear", "Multi-Angle-Lighting"],
                ["examples/10.jpeg", "Upscale the image.", "Upscale-Image"],
                ["examples/7.jpg", "Light source from the Below", "Multi-Angle-Lighting"],
                ["examples/2.jpeg", "Switch the camera to a top-down right corner view.", "Multiple-Angles"],
                ["examples/9.jpg", "The camera moves slightly forward as sunlight breaks through the clouds, casting a soft glow around the character's silhouette in the mist. Realistic cinematic style, atmospheric depth.", "Next-Scene"],
                ["examples/8.jpg", "Make the subjects skin details more prominent and natural.", "Edit-Skin"],
                ["examples/6.jpg", "Switch the camera to a bottom-up view.", "Multiple-Angles"],
                ["examples/6.jpg", "Rotate the camera 180 degrees upside down.", "Multiple-Angles"],
                ["examples/4.jpg", "Rotate the camera 45 degrees to the right.", "Multiple-Angles"],
                ["examples/4.jpg", "Switch the camera to a top-down view.", "Multiple-Angles"],
                ["examples/4.jpg", "Switch the camera to a wide-angle lens.", "Multiple-Angles"],
            ],
            inputs=[input_image, prompt, lora_adapter],
            outputs=[output_image, seed],
            fn=infer_example,
            cache_examples=False,
            label="Examples"
        )

    run_button.click(
        fn=infer,
        inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps],
        outputs=[output_image, seed]
    )
    
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)