Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import time | |
| import asyncio | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import edge_tts | |
| import cv2 | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| Qwen2VLForConditionalGeneration, | |
| AutoProcessor, | |
| ) | |
| from transformers.image_utils import load_image | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| # Load text-only model and tokenizer | |
| model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| model.eval() | |
| TTS_VOICES = [ | |
| "en-US-JennyNeural", # @tts1 | |
| "en-US-GuyNeural", # @tts2 | |
| ] | |
| MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" | |
| processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
| model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
| MODEL_ID, | |
| trust_remote_code=True, | |
| torch_dtype=torch.float16 | |
| ).to("cuda").eval() | |
| async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
| """Convert text to speech using Edge TTS and save as MP3""" | |
| communicate = edge_tts.Communicate(text, voice) | |
| await communicate.save(output_file) | |
| return output_file | |
| def clean_chat_history(chat_history): | |
| """ | |
| Filter out any chat entries whose "content" is not a string. | |
| This helps prevent errors when concatenating previous messages. | |
| """ | |
| cleaned = [] | |
| for msg in chat_history: | |
| if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
| cleaned.append(msg) | |
| return cleaned | |
| # Environment variables and parameters for Stable Diffusion XL | |
| # Use : SG161222/RealVisXL_V4.0_Lightning or SG161222/RealVisXL_V5.0_Lightning | |
| MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
| BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation | |
| # Load the SDXL pipeline | |
| sd_pipe = StableDiffusionXLPipeline.from_pretrained( | |
| MODEL_ID_SD, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
| # Ensure that the text encoder is in half-precision if using CUDA. | |
| if torch.cuda.is_available(): | |
| sd_pipe.text_encoder = sd_pipe.text_encoder.half() | |
| # Optional: compile the model for speedup if enabled | |
| if USE_TORCH_COMPILE: | |
| sd_pipe.compile() | |
| # Optional: offload parts of the model to CPU if needed | |
| if ENABLE_CPU_OFFLOAD: | |
| sd_pipe.enable_model_cpu_offload() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def save_image(img: Image.Image) -> str: | |
| """Save a PIL image with a unique filename and return the path.""" | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def progress_bar_html(label: str) -> str: | |
| """ | |
| Returns an HTML snippet for a thin progress bar with a label. | |
| The progress bar is styled as a dark red animated bar. | |
| """ | |
| return f''' | |
| <div style="display: flex; align-items: center;"> | |
| <span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
| <div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;"> | |
| <div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div> | |
| </div> | |
| </div> | |
| <style> | |
| @keyframes loading {{ | |
| 0% {{ transform: translateX(-100%); }} | |
| 100% {{ transform: translateX(100%); }} | |
| }} | |
| </style> | |
| ''' | |
| def downsample_video(video_path): | |
| """ | |
| Downsamples the video to 10 evenly spaced frames. | |
| Each frame is returned as a PIL image along with its timestamp. | |
| """ | |
| vidcap = cv2.VideoCapture(video_path) | |
| total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| frames = [] | |
| # Sample 10 evenly spaced frames. | |
| frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
| for i in frame_indices: | |
| vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| success, image = vidcap.read() | |
| if success: | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB | |
| pil_image = Image.fromarray(image) | |
| timestamp = round(i / fps, 2) | |
| frames.append((pil_image, timestamp)) | |
| vidcap.release() | |
| return frames | |
| def generate_image_fn( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 1, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3, | |
| num_inference_steps: int = 25, | |
| randomize_seed: bool = False, | |
| use_resolution_binning: bool = True, | |
| num_images: int = 1, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """Generate images using the SDXL pipeline.""" | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| options = { | |
| "prompt": [prompt] * num_images, | |
| "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, | |
| "width": width, | |
| "height": height, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "generator": generator, | |
| "output_type": "pil", | |
| } | |
| if use_resolution_binning: | |
| options["use_resolution_binning"] = True | |
| images = [] | |
| # Process in batches | |
| for i in range(0, num_images, BATCH_SIZE): | |
| batch_options = options.copy() | |
| batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] | |
| if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None: | |
| batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] | |
| # Wrap the pipeline call in autocast if using CUDA | |
| if device.type == "cuda": | |
| with torch.autocast("cuda", dtype=torch.float16): | |
| outputs = sd_pipe(**batch_options) | |
| else: | |
| outputs = sd_pipe(**batch_options) | |
| images.extend(outputs.images) | |
| image_paths = [save_image(img) for img in images] | |
| return image_paths, seed | |
| def generate( | |
| input_dict: dict, | |
| chat_history: list[dict], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ): | |
| """ | |
| Generates chatbot responses with support for multimodal input, TTS, and image generation. | |
| Special commands: | |
| - "@tts1" or "@tts2": triggers text-to-speech. | |
| - "@image": triggers image generation using the SDXL pipeline. | |
| - "@qwen2vl-video": triggers video processing using Qwen2VL. | |
| """ | |
| text = input_dict["text"] | |
| files = input_dict.get("files", []) | |
| lower_text = text.strip().lower() | |
| # Branch for image generation. | |
| if lower_text.startswith("@image"): | |
| # Remove the "@image" tag and use the rest as prompt | |
| prompt = text[len("@image"):].strip() | |
| yield progress_bar_html("Generating Image") | |
| image_paths, used_seed = generate_image_fn( | |
| prompt=prompt, | |
| negative_prompt="", | |
| use_negative_prompt=False, | |
| seed=1, | |
| width=1024, | |
| height=1024, | |
| guidance_scale=3, | |
| num_inference_steps=25, | |
| randomize_seed=True, | |
| use_resolution_binning=True, | |
| num_images=1, | |
| ) | |
| yield gr.Image(image_paths[0]) | |
| return | |
| # New branch for video processing with Qwen2VL. | |
| if lower_text.startswith("@video-infer"): | |
| prompt = text[len("@video-infer"):].strip() | |
| if files: | |
| # Assume the first file is a video. | |
| video_path = files[0] | |
| frames = downsample_video(video_path) | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt}]} | |
| ] | |
| # Append each frame with its timestamp. | |
| for frame in frames: | |
| image, timestamp = frame | |
| image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
| image.save(image_path) | |
| messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
| messages[1]["content"].append({"type": "image", "url": image_path}) | |
| else: | |
| messages = [ | |
| {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
| {"role": "user", "content": [{"type": "text", "text": prompt}]} | |
| ] | |
| inputs = processor.apply_chat_template( | |
| messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" | |
| ).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| **inputs, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Processing video with Qwen2VL") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| return | |
| # Determine if TTS is requested. | |
| tts_prefix = "@tts" | |
| is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
| voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
| if is_tts and voice_index: | |
| voice = TTS_VOICES[voice_index - 1] | |
| text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
| conversation = [{"role": "user", "content": text}] | |
| else: | |
| voice = None | |
| text = text.replace(tts_prefix, "").strip() | |
| conversation = clean_chat_history(chat_history) | |
| conversation.append({"role": "user", "content": text}) | |
| if files: | |
| if len(files) > 1: | |
| images = [load_image(image) for image in files] | |
| elif len(files) == 1: | |
| images = [load_image(files[0])] | |
| else: | |
| images = [] | |
| messages = [{ | |
| "role": "user", | |
| "content": [ | |
| *[{"type": "image", "image": image} for image in images], | |
| {"type": "text", "text": text}, | |
| ] | |
| }] | |
| prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda") | |
| streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
| thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| buffer = "" | |
| yield progress_bar_html("Thinking...") | |
| for new_text in streamer: | |
| buffer += new_text | |
| buffer = buffer.replace("<|im_end|>", "") | |
| time.sleep(0.01) | |
| yield buffer | |
| else: | |
| input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "input_ids": input_ids, | |
| "streamer": streamer, | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "num_beams": 1, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| t = Thread(target=model.generate, kwargs=generation_kwargs) | |
| t.start() | |
| outputs = [] | |
| yield progress_bar_html("Processing with Qwen2VL Ocr") | |
| for new_text in streamer: | |
| outputs.append(new_text) | |
| yield "".join(outputs) | |
| final_response = "".join(outputs) | |
| yield final_response | |
| if is_tts and voice: | |
| output_file = asyncio.run(text_to_speech(final_response, voice)) | |
| yield gr.Audio(output_file, autoplay=True) | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| examples=[ | |
| [{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}], | |
| [{"text": "@video-infer Summarize the event in video", "files": ["examples/sky.mp4"]}], | |
| [{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}], | |
| ["@image Chocolate dripping from a donut"], | |
| ["Python Program for Array Rotation"], | |
| ["@tts1 Who is Nikola Tesla, and why did he die?"], | |
| [{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}], | |
| [{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
| ["@tts2 What causes rainbows to form?"], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description="# **QwQ Edge `@video-infer 'prompt..', @image, @tts1`**", | |
| fill_height=True, | |
| textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder=" @tts1, @tts2-voices, @image for image gen, @video-infer for video, default [text, vision]"), | |
| stop_btn="Stop Generation", | |
| multimodal=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch(share=True) |