Spaces:
Configuration error
Configuration error
Upload 10 files
Browse files- README.md +166 -12
- app.py +48 -0
- audio.py +136 -0
- color_syncnet_train.py +279 -0
- hparams.py +101 -0
- hq_wav2lip_train.py +443 -0
- inference.py +280 -0
- preprocess.py +113 -0
- requirements.txt +8 -0
- wav2lip_train.py +374 -0
README.md
CHANGED
@@ -1,12 +1,166 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# **Wav2Lip**: *Accurately Lip-syncing Videos In The Wild*
|
2 |
+
|
3 |
+
### Wav2Lip is hosted for free at [Sync Labs](https://synclabs.so/)
|
4 |
+
|
5 |
+
Are you looking to integrate this into a product? We have a turn-key hosted API with new and improved lip-syncing models here: https://synclabs.so/
|
6 |
+
|
7 |
+
For any other commercial / enterprise requests, please contact us at pavan@synclabs.so and prady@synclabs.so
|
8 |
+
|
9 |
+
To reach out to the authors directly you can reach us at [email protected], [email protected].
|
10 |
+
|
11 |
+
This code is part of the paper: _A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild_ published at ACM Multimedia 2020.
|
12 |
+
|
13 |
+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrs2)](https://paperswithcode.com/sota/lip-sync-on-lrs2?p=a-lip-sync-expert-is-all-you-need-for-speech)
|
14 |
+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrs3)](https://paperswithcode.com/sota/lip-sync-on-lrs3?p=a-lip-sync-expert-is-all-you-need-for-speech)
|
15 |
+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/a-lip-sync-expert-is-all-you-need-for-speech/lip-sync-on-lrw)](https://paperswithcode.com/sota/lip-sync-on-lrw?p=a-lip-sync-expert-is-all-you-need-for-speech)
|
16 |
+
|
17 |
+
|📑 Original Paper|📰 Project Page|🌀 Demo|⚡ Live Testing|📔 Colab Notebook
|
18 |
+
|:-:|:-:|:-:|:-:|:-:|
|
19 |
+
[Paper](http://arxiv.org/abs/2008.10010) | [Project Page](http://cvit.iiit.ac.in/research/projects/cvit-projects/a-lip-sync-expert-is-all-you-need-for-speech-to-lip-generation-in-the-wild/) | [Demo Video](https://youtu.be/0fXaDCZNOJc) | [Interactive Demo](https://synclabs.so/) | [Colab Notebook](https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing) /[Updated Collab Notebook](https://colab.research.google.com/drive/1IjFW1cLevs6Ouyu4Yht4mnR4yeuMqO7Y#scrollTo=MH1m608OymLH)
|
20 |
+
|
21 |
+
![Logo](https://drive.google.com/uc?export=view&id=1Wn0hPmpo4GRbCIJR8Tf20Akzdi1qjjG9)
|
22 |
+
|
23 |
+
----------
|
24 |
+
**Highlights**
|
25 |
+
----------
|
26 |
+
- Weights of the visual quality disc has been updated in readme!
|
27 |
+
- Lip-sync videos to any target speech with high accuracy :100:. Try our [interactive demo](https://synclabs.so/).
|
28 |
+
- :sparkles: Works for any identity, voice, and language. Also works for CGI faces and synthetic voices.
|
29 |
+
- Complete training code, inference code, and pretrained models are available :boom:
|
30 |
+
- Or, quick-start with the Google Colab Notebook: [Link](https://colab.research.google.com/drive/1tZpDWXz49W6wDcTprANRGLo2D_EbD5J8?usp=sharing). Checkpoints and samples are available in a Google Drive [folder](https://drive.google.com/drive/folders/1I-0dNLfFOSFwrfqjNa-SXuwaURHE5K4k?usp=sharing) as well. There is also a [tutorial video](https://www.youtube.com/watch?v=Ic0TBhfuOrA) on this, courtesy of [What Make Art](https://www.youtube.com/channel/UCmGXH-jy0o2CuhqtpxbaQgA). Also, thanks to [Eyal Gruss](https://eyalgruss.com), there is a more accessible [Google Colab notebook](https://j.mp/wav2lip) with more useful features. A tutorial collab notebook is present at this [link](https://colab.research.google.com/drive/1IjFW1cLevs6Ouyu4Yht4mnR4yeuMqO7Y#scrollTo=MH1m608OymLH).
|
31 |
+
- :fire: :fire: Several new, reliable evaluation benchmarks and metrics [[`evaluation/` folder of this repo]](https://github.com/Rudrabha/Wav2Lip/tree/master/evaluation) released. Instructions to calculate the metrics reported in the paper are also present.
|
32 |
+
|
33 |
+
--------
|
34 |
+
**Disclaimer**
|
35 |
+
--------
|
36 |
+
All results from this open-source code or our [demo website](https://bhaasha.iiit.ac.in/lipsync) should only be used for research/academic/personal purposes only. As the models are trained on the <a href="http://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrs2.html">LRS2 dataset</a>, any form of commercial use is strictly prohibited. For commercial requests please contact us directly!
|
37 |
+
|
38 |
+
Prerequisites
|
39 |
+
-------------
|
40 |
+
- `Python 3.6`
|
41 |
+
- ffmpeg: `sudo apt-get install ffmpeg`
|
42 |
+
- Install necessary packages using `pip install -r requirements.txt`. Alternatively, instructions for using a docker image is provided [here](https://gist.github.com/xenogenesi/e62d3d13dadbc164124c830e9c453668). Have a look at [this comment](https://github.com/Rudrabha/Wav2Lip/issues/131#issuecomment-725478562) and comment on [the gist](https://gist.github.com/xenogenesi/e62d3d13dadbc164124c830e9c453668) if you encounter any issues.
|
43 |
+
- Face detection [pre-trained model](https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth) should be downloaded to `face_detection/detection/sfd/s3fd.pth`. Alternative [link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/prajwal_k_research_iiit_ac_in/EZsy6qWuivtDnANIG73iHjIBjMSoojcIV0NULXV-yiuiIg?e=qTasa8) if the above does not work.
|
44 |
+
|
45 |
+
Getting the weights
|
46 |
+
----------
|
47 |
+
| Model | Description | Link to the model |
|
48 |
+
| :-------------: | :---------------: | :---------------: |
|
49 |
+
| Wav2Lip | Highly accurate lip-sync | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/Eb3LEzbfuKlJiR600lQWRxgBIY27JZg80f7V9jtMfbNDaQ?e=TBFBVW) |
|
50 |
+
| Wav2Lip + GAN | Slightly inferior lip-sync, but better visual quality | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EdjI7bZlgApMqsVoEUUXpLsBxqXbn5z8VTmoxp55YNDcIA?e=n9ljGW) |
|
51 |
+
| Expert Discriminator | Weights of the expert discriminator | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EQRvmiZg-HRAjvI6zqN9eTEBP74KefynCwPWVmF57l-AYA?e=ZRPHKP) |
|
52 |
+
| Visual Quality Discriminator | Weights of the visual disc trained in a GAN setup | [Link](https://iiitaphyd-my.sharepoint.com/:u:/g/personal/radrabha_m_research_iiit_ac_in/EQVqH88dTm1HjlK11eNba5gBbn15WMS0B0EZbDBttqrqkg?e=ic0ljo) |
|
53 |
+
|
54 |
+
Lip-syncing videos using the pre-trained models (Inference)
|
55 |
+
-------
|
56 |
+
You can lip-sync any video to any audio:
|
57 |
+
```bash
|
58 |
+
python inference.py --checkpoint_path <ckpt> --face <video.mp4> --audio <an-audio-source>
|
59 |
+
```
|
60 |
+
The result is saved (by default) in `results/result_voice.mp4`. You can specify it as an argument, similar to several other available options. The audio source can be any file supported by `FFMPEG` containing audio data: `*.wav`, `*.mp3` or even a video file, from which the code will automatically extract the audio.
|
61 |
+
|
62 |
+
##### Tips for better results:
|
63 |
+
- Experiment with the `--pads` argument to adjust the detected face bounding box. Often leads to improved results. You might need to increase the bottom padding to include the chin region. E.g. `--pads 0 20 0 0`.
|
64 |
+
- If you see the mouth position dislocated or some weird artifacts such as two mouths, then it can be because of over-smoothing the face detections. Use the `--nosmooth` argument and give it another try.
|
65 |
+
- Experiment with the `--resize_factor` argument, to get a lower-resolution video. Why? The models are trained on faces that were at a lower resolution. You might get better, visually pleasing results for 720p videos than for 1080p videos (in many cases, the latter works well too).
|
66 |
+
- The Wav2Lip model without GAN usually needs more experimenting with the above two to get the most ideal results, and sometimes, can give you a better result as well.
|
67 |
+
|
68 |
+
Preparing LRS2 for training
|
69 |
+
----------
|
70 |
+
Our models are trained on LRS2. See [here](#training-on-datasets-other-than-lrs2) for a few suggestions regarding training on other datasets.
|
71 |
+
##### LRS2 dataset folder structure
|
72 |
+
|
73 |
+
```
|
74 |
+
data_root (mvlrs_v1)
|
75 |
+
├── main, pretrain (we use only main folder in this work)
|
76 |
+
| ├── list of folders
|
77 |
+
| │ ├── five-digit numbered video IDs ending with (.mp4)
|
78 |
+
```
|
79 |
+
|
80 |
+
Place the LRS2 filelists (train, val, test) `.txt` files in the `filelists/` folder.
|
81 |
+
|
82 |
+
##### Preprocess the dataset for fast training
|
83 |
+
|
84 |
+
```bash
|
85 |
+
python preprocess.py --data_root data_root/main --preprocessed_root lrs2_preprocessed/
|
86 |
+
```
|
87 |
+
Additional options like `batch_size` and the number of GPUs to use in parallel to use can also be set.
|
88 |
+
|
89 |
+
##### Preprocessed LRS2 folder structure
|
90 |
+
```
|
91 |
+
preprocessed_root (lrs2_preprocessed)
|
92 |
+
├── list of folders
|
93 |
+
| ├── Folders with five-digit numbered video IDs
|
94 |
+
| │ ├── *.jpg
|
95 |
+
| │ ├── audio.wav
|
96 |
+
```
|
97 |
+
|
98 |
+
Train!
|
99 |
+
----------
|
100 |
+
There are two major steps: (i) Train the expert lip-sync discriminator, (ii) Train the Wav2Lip model(s).
|
101 |
+
|
102 |
+
##### Training the expert discriminator
|
103 |
+
You can download [the pre-trained weights](#getting-the-weights) if you want to skip this step. To train it:
|
104 |
+
```bash
|
105 |
+
python color_syncnet_train.py --data_root lrs2_preprocessed/ --checkpoint_dir <folder_to_save_checkpoints>
|
106 |
+
```
|
107 |
+
##### Training the Wav2Lip models
|
108 |
+
You can either train the model without the additional visual quality discriminator (< 1 day of training) or use the discriminator (~2 days). For the former, run:
|
109 |
+
```bash
|
110 |
+
python wav2lip_train.py --data_root lrs2_preprocessed/ --checkpoint_dir <folder_to_save_checkpoints> --syncnet_checkpoint_path <path_to_expert_disc_checkpoint>
|
111 |
+
```
|
112 |
+
|
113 |
+
To train with the visual quality discriminator, you should run `hq_wav2lip_train.py` instead. The arguments for both files are similar. In both cases, you can resume training as well. Look at `python wav2lip_train.py --help` for more details. You can also set additional less commonly-used hyper-parameters at the bottom of the `hparams.py` file.
|
114 |
+
|
115 |
+
Training on datasets other than LRS2
|
116 |
+
------------------------------------
|
117 |
+
Training on other datasets might require modifications to the code. Please read the following before you raise an issue:
|
118 |
+
|
119 |
+
- You might not get good results by training/fine-tuning on a few minutes of a single speaker. This is a separate research problem, to which we do not have a solution yet. Thus, we would most likely not be able to resolve your issue.
|
120 |
+
- You must train the expert discriminator for your own dataset before training Wav2Lip.
|
121 |
+
- If it is your own dataset downloaded from the web, in most cases, needs to be sync-corrected.
|
122 |
+
- Be mindful of the FPS of the videos of your dataset. Changes to FPS would need significant code changes.
|
123 |
+
- The expert discriminator's eval loss should go down to ~0.25 and the Wav2Lip eval sync loss should go down to ~0.2 to get good results.
|
124 |
+
|
125 |
+
When raising an issue on this topic, please let us know that you are aware of all these points.
|
126 |
+
|
127 |
+
We have an HD model trained on a dataset allowing commercial usage. The size of the generated face will be 192 x 288 in our new model.
|
128 |
+
|
129 |
+
Evaluation
|
130 |
+
----------
|
131 |
+
Please check the `evaluation/` folder for the instructions.
|
132 |
+
|
133 |
+
License and Citation
|
134 |
+
----------
|
135 |
+
This repository can only be used for personal/research/non-commercial purposes. However, for commercial requests, please contact us directly at [email protected] or [email protected]. We have a turn-key hosted API with new and improved lip-syncing models here: https://synclabs.so/
|
136 |
+
The size of the generated face will be 192 x 288 in our new models. Please cite the following paper if you use this repository:
|
137 |
+
```
|
138 |
+
@inproceedings{10.1145/3394171.3413532,
|
139 |
+
author = {Prajwal, K R and Mukhopadhyay, Rudrabha and Namboodiri, Vinay P. and Jawahar, C.V.},
|
140 |
+
title = {A Lip Sync Expert Is All You Need for Speech to Lip Generation In the Wild},
|
141 |
+
year = {2020},
|
142 |
+
isbn = {9781450379885},
|
143 |
+
publisher = {Association for Computing Machinery},
|
144 |
+
address = {New York, NY, USA},
|
145 |
+
url = {https://doi.org/10.1145/3394171.3413532},
|
146 |
+
doi = {10.1145/3394171.3413532},
|
147 |
+
booktitle = {Proceedings of the 28th ACM International Conference on Multimedia},
|
148 |
+
pages = {484–492},
|
149 |
+
numpages = {9},
|
150 |
+
keywords = {lip sync, talking face generation, video generation},
|
151 |
+
location = {Seattle, WA, USA},
|
152 |
+
series = {MM '20}
|
153 |
+
}
|
154 |
+
```
|
155 |
+
|
156 |
+
|
157 |
+
Acknowledgments
|
158 |
+
----------
|
159 |
+
Parts of the code structure are inspired by this [TTS repository](https://github.com/r9y9/deepvoice3_pytorch). We thank the author for this wonderful code. The code for Face Detection has been taken from the [face_alignment](https://github.com/1adrianb/face-alignment) repository. We thank the authors for releasing their code and models. We thank [zabique](https://github.com/zabique) for the tutorial collab notebook.
|
160 |
+
|
161 |
+
## Acknowledgements
|
162 |
+
|
163 |
+
- [Awesome Readme Templates](https://awesomeopensource.com/project/elangosundar/awesome-README-templates)
|
164 |
+
- [Awesome README](https://github.com/matiassingers/awesome-readme)
|
165 |
+
- [How to write a Good readme](https://bulldogjob.com/news/449-how-to-write-a-good-readme-for-your-github-project)
|
166 |
+
|
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
import subprocess
|
4 |
+
from subprocess import call
|
5 |
+
|
6 |
+
with gr.Blocks() as ui:
|
7 |
+
with gr.Row():
|
8 |
+
video = gr.File(label="Video or Image")
|
9 |
+
audio = gr.File(label="Audio")
|
10 |
+
with gr.Column():
|
11 |
+
checkpoint = gr.Radio(["wav2lip", "wav2lip_gan"], label="Checkpoint")
|
12 |
+
no_smooth = gr.Checkbox(label="No Smooth")
|
13 |
+
resize_factor = gr.Slider(minimum=1, maximum=4, step=1, label="Resize Factor")
|
14 |
+
with gr.Row():
|
15 |
+
with gr.Column():
|
16 |
+
pad_top = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Pad Top")
|
17 |
+
pad_bottom = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Pad Bottom (Often increasing this to 20 allows chin to be included)")
|
18 |
+
pad_left = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Pad Left")
|
19 |
+
pad_right = gr.Slider(minimum=0, maximum=50, step=1, value=0, label="Pad Right")
|
20 |
+
generate_btn = gr.Button("Generate")
|
21 |
+
with gr.Column():
|
22 |
+
result = gr.Video()
|
23 |
+
|
24 |
+
def generate(video, audio, checkpoint, no_smooth, resize_factor, pad_top, pad_bottom, pad_left, pad_right):
|
25 |
+
if video is None or audio is None or checkpoint is None:
|
26 |
+
return
|
27 |
+
|
28 |
+
smooth = "--nosmooth" if no_smooth else ""
|
29 |
+
|
30 |
+
|
31 |
+
cmd = [
|
32 |
+
"python",
|
33 |
+
"inference.py",
|
34 |
+
"--checkpoint_path", f"checkpoints/{checkpoint}.pth",
|
35 |
+
"--face", video.name,
|
36 |
+
"--audio", audio.name,
|
37 |
+
"--outfile", "results/output.mp4",
|
38 |
+
]
|
39 |
+
|
40 |
+
call(cmd)
|
41 |
+
return "results/output.mp4"
|
42 |
+
|
43 |
+
generate_btn.click(
|
44 |
+
generate,
|
45 |
+
[video, audio, checkpoint, pad_top, pad_bottom, pad_left, pad_right, resize_factor],
|
46 |
+
result)
|
47 |
+
|
48 |
+
ui.queue().launch(share=True,debug=True)
|
audio.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import librosa.filters
|
3 |
+
import numpy as np
|
4 |
+
# import tensorflow as tf
|
5 |
+
from scipy import signal
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from hparams import hparams as hp
|
8 |
+
|
9 |
+
def load_wav(path, sr):
|
10 |
+
return librosa.core.load(path, sr=sr)[0]
|
11 |
+
|
12 |
+
def save_wav(wav, path, sr):
|
13 |
+
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
14 |
+
#proposed by @dsmiller
|
15 |
+
wavfile.write(path, sr, wav.astype(np.int16))
|
16 |
+
|
17 |
+
def save_wavenet_wav(wav, path, sr):
|
18 |
+
librosa.output.write_wav(path, wav, sr=sr)
|
19 |
+
|
20 |
+
def preemphasis(wav, k, preemphasize=True):
|
21 |
+
if preemphasize:
|
22 |
+
return signal.lfilter([1, -k], [1], wav)
|
23 |
+
return wav
|
24 |
+
|
25 |
+
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
26 |
+
if inv_preemphasize:
|
27 |
+
return signal.lfilter([1], [1, -k], wav)
|
28 |
+
return wav
|
29 |
+
|
30 |
+
def get_hop_size():
|
31 |
+
hop_size = hp.hop_size
|
32 |
+
if hop_size is None:
|
33 |
+
assert hp.frame_shift_ms is not None
|
34 |
+
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
35 |
+
return hop_size
|
36 |
+
|
37 |
+
def linearspectrogram(wav):
|
38 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
39 |
+
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
40 |
+
|
41 |
+
if hp.signal_normalization:
|
42 |
+
return _normalize(S)
|
43 |
+
return S
|
44 |
+
|
45 |
+
def melspectrogram(wav):
|
46 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
47 |
+
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
48 |
+
|
49 |
+
if hp.signal_normalization:
|
50 |
+
return _normalize(S)
|
51 |
+
return S
|
52 |
+
|
53 |
+
def _lws_processor():
|
54 |
+
import lws
|
55 |
+
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
56 |
+
|
57 |
+
def _stft(y):
|
58 |
+
if hp.use_lws:
|
59 |
+
return _lws_processor(hp).stft(y).T
|
60 |
+
else:
|
61 |
+
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
62 |
+
|
63 |
+
##########################################################
|
64 |
+
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
65 |
+
def num_frames(length, fsize, fshift):
|
66 |
+
"""Compute number of time frames of spectrogram
|
67 |
+
"""
|
68 |
+
pad = (fsize - fshift)
|
69 |
+
if length % fshift == 0:
|
70 |
+
M = (length + pad * 2 - fsize) // fshift + 1
|
71 |
+
else:
|
72 |
+
M = (length + pad * 2 - fsize) // fshift + 2
|
73 |
+
return M
|
74 |
+
|
75 |
+
|
76 |
+
def pad_lr(x, fsize, fshift):
|
77 |
+
"""Compute left and right padding
|
78 |
+
"""
|
79 |
+
M = num_frames(len(x), fsize, fshift)
|
80 |
+
pad = (fsize - fshift)
|
81 |
+
T = len(x) + 2 * pad
|
82 |
+
r = (M - 1) * fshift + fsize - T
|
83 |
+
return pad, pad + r
|
84 |
+
##########################################################
|
85 |
+
#Librosa correct padding
|
86 |
+
def librosa_pad_lr(x, fsize, fshift):
|
87 |
+
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
88 |
+
|
89 |
+
# Conversions
|
90 |
+
_mel_basis = None
|
91 |
+
|
92 |
+
def _linear_to_mel(spectogram):
|
93 |
+
global _mel_basis
|
94 |
+
if _mel_basis is None:
|
95 |
+
_mel_basis = _build_mel_basis()
|
96 |
+
return np.dot(_mel_basis, spectogram)
|
97 |
+
|
98 |
+
def _build_mel_basis():
|
99 |
+
assert hp.fmax <= hp.sample_rate // 2
|
100 |
+
return librosa.filters.mel(sr=hp.sample_rate, n_fft= hp.n_fft, n_mels=hp.num_mels,
|
101 |
+
fmin=hp.fmin, fmax=hp.fmax)
|
102 |
+
|
103 |
+
def _amp_to_db(x):
|
104 |
+
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
105 |
+
return 20 * np.log10(np.maximum(min_level, x))
|
106 |
+
|
107 |
+
def _db_to_amp(x):
|
108 |
+
return np.power(10.0, (x) * 0.05)
|
109 |
+
|
110 |
+
def _normalize(S):
|
111 |
+
if hp.allow_clipping_in_normalization:
|
112 |
+
if hp.symmetric_mels:
|
113 |
+
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
114 |
+
-hp.max_abs_value, hp.max_abs_value)
|
115 |
+
else:
|
116 |
+
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
117 |
+
|
118 |
+
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
119 |
+
if hp.symmetric_mels:
|
120 |
+
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
121 |
+
else:
|
122 |
+
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
123 |
+
|
124 |
+
def _denormalize(D):
|
125 |
+
if hp.allow_clipping_in_normalization:
|
126 |
+
if hp.symmetric_mels:
|
127 |
+
return (((np.clip(D, -hp.max_abs_value,
|
128 |
+
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
129 |
+
+ hp.min_level_db)
|
130 |
+
else:
|
131 |
+
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
132 |
+
|
133 |
+
if hp.symmetric_mels:
|
134 |
+
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
135 |
+
else:
|
136 |
+
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
color_syncnet_train.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, join, basename, isfile
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
from models import SyncNet_color as SyncNet
|
5 |
+
import audio
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch import optim
|
10 |
+
import torch.backends.cudnn as cudnn
|
11 |
+
from torch.utils import data as data_utils
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from glob import glob
|
15 |
+
|
16 |
+
import os, random, cv2, argparse
|
17 |
+
from hparams import hparams, get_image_list
|
18 |
+
|
19 |
+
parser = argparse.ArgumentParser(description='Code to train the expert lip-sync discriminator')
|
20 |
+
|
21 |
+
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True)
|
22 |
+
|
23 |
+
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
|
24 |
+
parser.add_argument('--checkpoint_path', help='Resumed from this checkpoint', default=None, type=str)
|
25 |
+
|
26 |
+
args = parser.parse_args()
|
27 |
+
|
28 |
+
|
29 |
+
global_step = 0
|
30 |
+
global_epoch = 0
|
31 |
+
use_cuda = torch.cuda.is_available()
|
32 |
+
print('use_cuda: {}'.format(use_cuda))
|
33 |
+
|
34 |
+
syncnet_T = 5
|
35 |
+
syncnet_mel_step_size = 16
|
36 |
+
|
37 |
+
class Dataset(object):
|
38 |
+
def __init__(self, split):
|
39 |
+
self.all_videos = get_image_list(args.data_root, split)
|
40 |
+
|
41 |
+
def get_frame_id(self, frame):
|
42 |
+
return int(basename(frame).split('.')[0])
|
43 |
+
|
44 |
+
def get_window(self, start_frame):
|
45 |
+
start_id = self.get_frame_id(start_frame)
|
46 |
+
vidname = dirname(start_frame)
|
47 |
+
|
48 |
+
window_fnames = []
|
49 |
+
for frame_id in range(start_id, start_id + syncnet_T):
|
50 |
+
frame = join(vidname, '{}.jpg'.format(frame_id))
|
51 |
+
if not isfile(frame):
|
52 |
+
return None
|
53 |
+
window_fnames.append(frame)
|
54 |
+
return window_fnames
|
55 |
+
|
56 |
+
def crop_audio_window(self, spec, start_frame):
|
57 |
+
# num_frames = (T x hop_size * fps) / sample_rate
|
58 |
+
start_frame_num = self.get_frame_id(start_frame)
|
59 |
+
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
|
60 |
+
|
61 |
+
end_idx = start_idx + syncnet_mel_step_size
|
62 |
+
|
63 |
+
return spec[start_idx : end_idx, :]
|
64 |
+
|
65 |
+
|
66 |
+
def __len__(self):
|
67 |
+
return len(self.all_videos)
|
68 |
+
|
69 |
+
def __getitem__(self, idx):
|
70 |
+
while 1:
|
71 |
+
idx = random.randint(0, len(self.all_videos) - 1)
|
72 |
+
vidname = self.all_videos[idx]
|
73 |
+
|
74 |
+
img_names = list(glob(join(vidname, '*.jpg')))
|
75 |
+
if len(img_names) <= 3 * syncnet_T:
|
76 |
+
continue
|
77 |
+
img_name = random.choice(img_names)
|
78 |
+
wrong_img_name = random.choice(img_names)
|
79 |
+
while wrong_img_name == img_name:
|
80 |
+
wrong_img_name = random.choice(img_names)
|
81 |
+
|
82 |
+
if random.choice([True, False]):
|
83 |
+
y = torch.ones(1).float()
|
84 |
+
chosen = img_name
|
85 |
+
else:
|
86 |
+
y = torch.zeros(1).float()
|
87 |
+
chosen = wrong_img_name
|
88 |
+
|
89 |
+
window_fnames = self.get_window(chosen)
|
90 |
+
if window_fnames is None:
|
91 |
+
continue
|
92 |
+
|
93 |
+
window = []
|
94 |
+
all_read = True
|
95 |
+
for fname in window_fnames:
|
96 |
+
img = cv2.imread(fname)
|
97 |
+
if img is None:
|
98 |
+
all_read = False
|
99 |
+
break
|
100 |
+
try:
|
101 |
+
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
|
102 |
+
except Exception as e:
|
103 |
+
all_read = False
|
104 |
+
break
|
105 |
+
|
106 |
+
window.append(img)
|
107 |
+
|
108 |
+
if not all_read: continue
|
109 |
+
|
110 |
+
try:
|
111 |
+
wavpath = join(vidname, "audio.wav")
|
112 |
+
wav = audio.load_wav(wavpath, hparams.sample_rate)
|
113 |
+
|
114 |
+
orig_mel = audio.melspectrogram(wav).T
|
115 |
+
except Exception as e:
|
116 |
+
continue
|
117 |
+
|
118 |
+
mel = self.crop_audio_window(orig_mel.copy(), img_name)
|
119 |
+
|
120 |
+
if (mel.shape[0] != syncnet_mel_step_size):
|
121 |
+
continue
|
122 |
+
|
123 |
+
# H x W x 3 * T
|
124 |
+
x = np.concatenate(window, axis=2) / 255.
|
125 |
+
x = x.transpose(2, 0, 1)
|
126 |
+
x = x[:, x.shape[1]//2:]
|
127 |
+
|
128 |
+
x = torch.FloatTensor(x)
|
129 |
+
mel = torch.FloatTensor(mel.T).unsqueeze(0)
|
130 |
+
|
131 |
+
return x, mel, y
|
132 |
+
|
133 |
+
logloss = nn.BCELoss()
|
134 |
+
def cosine_loss(a, v, y):
|
135 |
+
d = nn.functional.cosine_similarity(a, v)
|
136 |
+
loss = logloss(d.unsqueeze(1), y)
|
137 |
+
|
138 |
+
return loss
|
139 |
+
|
140 |
+
def train(device, model, train_data_loader, test_data_loader, optimizer,
|
141 |
+
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
|
142 |
+
|
143 |
+
global global_step, global_epoch
|
144 |
+
resumed_step = global_step
|
145 |
+
|
146 |
+
while global_epoch < nepochs:
|
147 |
+
running_loss = 0.
|
148 |
+
prog_bar = tqdm(enumerate(train_data_loader))
|
149 |
+
for step, (x, mel, y) in prog_bar:
|
150 |
+
model.train()
|
151 |
+
optimizer.zero_grad()
|
152 |
+
|
153 |
+
# Transform data to CUDA device
|
154 |
+
x = x.to(device)
|
155 |
+
|
156 |
+
mel = mel.to(device)
|
157 |
+
|
158 |
+
a, v = model(mel, x)
|
159 |
+
y = y.to(device)
|
160 |
+
|
161 |
+
loss = cosine_loss(a, v, y)
|
162 |
+
loss.backward()
|
163 |
+
optimizer.step()
|
164 |
+
|
165 |
+
global_step += 1
|
166 |
+
cur_session_steps = global_step - resumed_step
|
167 |
+
running_loss += loss.item()
|
168 |
+
|
169 |
+
if global_step == 1 or global_step % checkpoint_interval == 0:
|
170 |
+
save_checkpoint(
|
171 |
+
model, optimizer, global_step, checkpoint_dir, global_epoch)
|
172 |
+
|
173 |
+
if global_step % hparams.syncnet_eval_interval == 0:
|
174 |
+
with torch.no_grad():
|
175 |
+
eval_model(test_data_loader, global_step, device, model, checkpoint_dir)
|
176 |
+
|
177 |
+
prog_bar.set_description('Loss: {}'.format(running_loss / (step + 1)))
|
178 |
+
|
179 |
+
global_epoch += 1
|
180 |
+
|
181 |
+
def eval_model(test_data_loader, global_step, device, model, checkpoint_dir):
|
182 |
+
eval_steps = 1400
|
183 |
+
print('Evaluating for {} steps'.format(eval_steps))
|
184 |
+
losses = []
|
185 |
+
while 1:
|
186 |
+
for step, (x, mel, y) in enumerate(test_data_loader):
|
187 |
+
|
188 |
+
model.eval()
|
189 |
+
|
190 |
+
# Transform data to CUDA device
|
191 |
+
x = x.to(device)
|
192 |
+
|
193 |
+
mel = mel.to(device)
|
194 |
+
|
195 |
+
a, v = model(mel, x)
|
196 |
+
y = y.to(device)
|
197 |
+
|
198 |
+
loss = cosine_loss(a, v, y)
|
199 |
+
losses.append(loss.item())
|
200 |
+
|
201 |
+
if step > eval_steps: break
|
202 |
+
|
203 |
+
averaged_loss = sum(losses) / len(losses)
|
204 |
+
print(averaged_loss)
|
205 |
+
|
206 |
+
return
|
207 |
+
|
208 |
+
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch):
|
209 |
+
|
210 |
+
checkpoint_path = join(
|
211 |
+
checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
|
212 |
+
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
|
213 |
+
torch.save({
|
214 |
+
"state_dict": model.state_dict(),
|
215 |
+
"optimizer": optimizer_state,
|
216 |
+
"global_step": step,
|
217 |
+
"global_epoch": epoch,
|
218 |
+
}, checkpoint_path)
|
219 |
+
print("Saved checkpoint:", checkpoint_path)
|
220 |
+
|
221 |
+
def _load(checkpoint_path):
|
222 |
+
if use_cuda:
|
223 |
+
checkpoint = torch.load(checkpoint_path)
|
224 |
+
else:
|
225 |
+
checkpoint = torch.load(checkpoint_path,
|
226 |
+
map_location=lambda storage, loc: storage)
|
227 |
+
return checkpoint
|
228 |
+
|
229 |
+
def load_checkpoint(path, model, optimizer, reset_optimizer=False):
|
230 |
+
global global_step
|
231 |
+
global global_epoch
|
232 |
+
|
233 |
+
print("Load checkpoint from: {}".format(path))
|
234 |
+
checkpoint = _load(path)
|
235 |
+
model.load_state_dict(checkpoint["state_dict"])
|
236 |
+
if not reset_optimizer:
|
237 |
+
optimizer_state = checkpoint["optimizer"]
|
238 |
+
if optimizer_state is not None:
|
239 |
+
print("Load optimizer state from {}".format(path))
|
240 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
241 |
+
global_step = checkpoint["global_step"]
|
242 |
+
global_epoch = checkpoint["global_epoch"]
|
243 |
+
|
244 |
+
return model
|
245 |
+
|
246 |
+
if __name__ == "__main__":
|
247 |
+
checkpoint_dir = args.checkpoint_dir
|
248 |
+
checkpoint_path = args.checkpoint_path
|
249 |
+
|
250 |
+
if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir)
|
251 |
+
|
252 |
+
# Dataset and Dataloader setup
|
253 |
+
train_dataset = Dataset('train')
|
254 |
+
test_dataset = Dataset('val')
|
255 |
+
|
256 |
+
train_data_loader = data_utils.DataLoader(
|
257 |
+
train_dataset, batch_size=hparams.syncnet_batch_size, shuffle=True,
|
258 |
+
num_workers=hparams.num_workers)
|
259 |
+
|
260 |
+
test_data_loader = data_utils.DataLoader(
|
261 |
+
test_dataset, batch_size=hparams.syncnet_batch_size,
|
262 |
+
num_workers=8)
|
263 |
+
|
264 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
265 |
+
|
266 |
+
# Model
|
267 |
+
model = SyncNet().to(device)
|
268 |
+
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
|
269 |
+
|
270 |
+
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
|
271 |
+
lr=hparams.syncnet_lr)
|
272 |
+
|
273 |
+
if checkpoint_path is not None:
|
274 |
+
load_checkpoint(checkpoint_path, model, optimizer, reset_optimizer=False)
|
275 |
+
|
276 |
+
train(device, model, train_data_loader, test_data_loader, optimizer,
|
277 |
+
checkpoint_dir=checkpoint_dir,
|
278 |
+
checkpoint_interval=hparams.syncnet_checkpoint_interval,
|
279 |
+
nepochs=hparams.nepochs)
|
hparams.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from glob import glob
|
2 |
+
import os
|
3 |
+
|
4 |
+
def get_image_list(data_root, split):
|
5 |
+
filelist = []
|
6 |
+
|
7 |
+
with open('filelists/{}.txt'.format(split)) as f:
|
8 |
+
for line in f:
|
9 |
+
line = line.strip()
|
10 |
+
if ' ' in line: line = line.split()[0]
|
11 |
+
filelist.append(os.path.join(data_root, line))
|
12 |
+
|
13 |
+
return filelist
|
14 |
+
|
15 |
+
class HParams:
|
16 |
+
def __init__(self, **kwargs):
|
17 |
+
self.data = {}
|
18 |
+
|
19 |
+
for key, value in kwargs.items():
|
20 |
+
self.data[key] = value
|
21 |
+
|
22 |
+
def __getattr__(self, key):
|
23 |
+
if key not in self.data:
|
24 |
+
raise AttributeError("'HParams' object has no attribute %s" % key)
|
25 |
+
return self.data[key]
|
26 |
+
|
27 |
+
def set_hparam(self, key, value):
|
28 |
+
self.data[key] = value
|
29 |
+
|
30 |
+
|
31 |
+
# Default hyperparameters
|
32 |
+
hparams = HParams(
|
33 |
+
num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality
|
34 |
+
# network
|
35 |
+
rescale=True, # Whether to rescale audio prior to preprocessing
|
36 |
+
rescaling_max=0.9, # Rescaling value
|
37 |
+
|
38 |
+
# Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction
|
39 |
+
# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder
|
40 |
+
# Does not work if n_ffit is not multiple of hop_size!!
|
41 |
+
use_lws=False,
|
42 |
+
|
43 |
+
n_fft=800, # Extra window size is filled with 0 paddings to match this parameter
|
44 |
+
hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate)
|
45 |
+
win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate)
|
46 |
+
sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>)
|
47 |
+
|
48 |
+
frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5)
|
49 |
+
|
50 |
+
# Mel and Linear spectrograms normalization/scaling and clipping
|
51 |
+
signal_normalization=True,
|
52 |
+
# Whether to normalize mel spectrograms to some predefined range (following below parameters)
|
53 |
+
allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True
|
54 |
+
symmetric_mels=True,
|
55 |
+
# Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2,
|
56 |
+
# faster and cleaner convergence)
|
57 |
+
max_abs_value=4.,
|
58 |
+
# max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not
|
59 |
+
# be too big to avoid gradient explosion,
|
60 |
+
# not too small for fast convergence)
|
61 |
+
# Contribution by @begeekmyfriend
|
62 |
+
# Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude
|
63 |
+
# levels. Also allows for better G&L phase reconstruction)
|
64 |
+
preemphasize=True, # whether to apply filter
|
65 |
+
preemphasis=0.97, # filter coefficient.
|
66 |
+
|
67 |
+
# Limits
|
68 |
+
min_level_db=-100,
|
69 |
+
ref_level_db=20,
|
70 |
+
fmin=55,
|
71 |
+
# Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To
|
72 |
+
# test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
|
73 |
+
fmax=7600, # To be increased/reduced depending on data.
|
74 |
+
|
75 |
+
###################### Our training parameters #################################
|
76 |
+
img_size=96,
|
77 |
+
fps=25,
|
78 |
+
|
79 |
+
batch_size=16,
|
80 |
+
initial_learning_rate=1e-4,
|
81 |
+
nepochs=200000000000000000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs
|
82 |
+
num_workers=16,
|
83 |
+
checkpoint_interval=3000,
|
84 |
+
eval_interval=3000,
|
85 |
+
save_optimizer_state=True,
|
86 |
+
|
87 |
+
syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence.
|
88 |
+
syncnet_batch_size=64,
|
89 |
+
syncnet_lr=1e-4,
|
90 |
+
syncnet_eval_interval=10000,
|
91 |
+
syncnet_checkpoint_interval=10000,
|
92 |
+
|
93 |
+
disc_wt=0.07,
|
94 |
+
disc_initial_learning_rate=1e-4,
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
def hparams_debug_string():
|
99 |
+
values = hparams.values()
|
100 |
+
hp = [" %s: %s" % (name, values[name]) for name in sorted(values) if name != "sentences"]
|
101 |
+
return "Hyperparameters:\n" + "\n".join(hp)
|
hq_wav2lip_train.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, join, basename, isfile
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
from models import SyncNet_color as SyncNet
|
5 |
+
from models import Wav2Lip, Wav2Lip_disc_qual
|
6 |
+
import audio
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch import optim
|
12 |
+
import torch.backends.cudnn as cudnn
|
13 |
+
from torch.utils import data as data_utils
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from glob import glob
|
17 |
+
|
18 |
+
import os, random, cv2, argparse
|
19 |
+
from hparams import hparams, get_image_list
|
20 |
+
|
21 |
+
parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model WITH the visual quality discriminator')
|
22 |
+
|
23 |
+
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str)
|
24 |
+
|
25 |
+
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
|
26 |
+
parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str)
|
27 |
+
|
28 |
+
parser.add_argument('--checkpoint_path', help='Resume generator from this checkpoint', default=None, type=str)
|
29 |
+
parser.add_argument('--disc_checkpoint_path', help='Resume quality disc from this checkpoint', default=None, type=str)
|
30 |
+
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
|
34 |
+
global_step = 0
|
35 |
+
global_epoch = 0
|
36 |
+
use_cuda = torch.cuda.is_available()
|
37 |
+
print('use_cuda: {}'.format(use_cuda))
|
38 |
+
|
39 |
+
syncnet_T = 5
|
40 |
+
syncnet_mel_step_size = 16
|
41 |
+
|
42 |
+
class Dataset(object):
|
43 |
+
def __init__(self, split):
|
44 |
+
self.all_videos = get_image_list(args.data_root, split)
|
45 |
+
|
46 |
+
def get_frame_id(self, frame):
|
47 |
+
return int(basename(frame).split('.')[0])
|
48 |
+
|
49 |
+
def get_window(self, start_frame):
|
50 |
+
start_id = self.get_frame_id(start_frame)
|
51 |
+
vidname = dirname(start_frame)
|
52 |
+
|
53 |
+
window_fnames = []
|
54 |
+
for frame_id in range(start_id, start_id + syncnet_T):
|
55 |
+
frame = join(vidname, '{}.jpg'.format(frame_id))
|
56 |
+
if not isfile(frame):
|
57 |
+
return None
|
58 |
+
window_fnames.append(frame)
|
59 |
+
return window_fnames
|
60 |
+
|
61 |
+
def read_window(self, window_fnames):
|
62 |
+
if window_fnames is None: return None
|
63 |
+
window = []
|
64 |
+
for fname in window_fnames:
|
65 |
+
img = cv2.imread(fname)
|
66 |
+
if img is None:
|
67 |
+
return None
|
68 |
+
try:
|
69 |
+
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
|
70 |
+
except Exception as e:
|
71 |
+
return None
|
72 |
+
|
73 |
+
window.append(img)
|
74 |
+
|
75 |
+
return window
|
76 |
+
|
77 |
+
def crop_audio_window(self, spec, start_frame):
|
78 |
+
if type(start_frame) == int:
|
79 |
+
start_frame_num = start_frame
|
80 |
+
else:
|
81 |
+
start_frame_num = self.get_frame_id(start_frame)
|
82 |
+
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
|
83 |
+
|
84 |
+
end_idx = start_idx + syncnet_mel_step_size
|
85 |
+
|
86 |
+
return spec[start_idx : end_idx, :]
|
87 |
+
|
88 |
+
def get_segmented_mels(self, spec, start_frame):
|
89 |
+
mels = []
|
90 |
+
assert syncnet_T == 5
|
91 |
+
start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing
|
92 |
+
if start_frame_num - 2 < 0: return None
|
93 |
+
for i in range(start_frame_num, start_frame_num + syncnet_T):
|
94 |
+
m = self.crop_audio_window(spec, i - 2)
|
95 |
+
if m.shape[0] != syncnet_mel_step_size:
|
96 |
+
return None
|
97 |
+
mels.append(m.T)
|
98 |
+
|
99 |
+
mels = np.asarray(mels)
|
100 |
+
|
101 |
+
return mels
|
102 |
+
|
103 |
+
def prepare_window(self, window):
|
104 |
+
# 3 x T x H x W
|
105 |
+
x = np.asarray(window) / 255.
|
106 |
+
x = np.transpose(x, (3, 0, 1, 2))
|
107 |
+
|
108 |
+
return x
|
109 |
+
|
110 |
+
def __len__(self):
|
111 |
+
return len(self.all_videos)
|
112 |
+
|
113 |
+
def __getitem__(self, idx):
|
114 |
+
while 1:
|
115 |
+
idx = random.randint(0, len(self.all_videos) - 1)
|
116 |
+
vidname = self.all_videos[idx]
|
117 |
+
img_names = list(glob(join(vidname, '*.jpg')))
|
118 |
+
if len(img_names) <= 3 * syncnet_T:
|
119 |
+
continue
|
120 |
+
|
121 |
+
img_name = random.choice(img_names)
|
122 |
+
wrong_img_name = random.choice(img_names)
|
123 |
+
while wrong_img_name == img_name:
|
124 |
+
wrong_img_name = random.choice(img_names)
|
125 |
+
|
126 |
+
window_fnames = self.get_window(img_name)
|
127 |
+
wrong_window_fnames = self.get_window(wrong_img_name)
|
128 |
+
if window_fnames is None or wrong_window_fnames is None:
|
129 |
+
continue
|
130 |
+
|
131 |
+
window = self.read_window(window_fnames)
|
132 |
+
if window is None:
|
133 |
+
continue
|
134 |
+
|
135 |
+
wrong_window = self.read_window(wrong_window_fnames)
|
136 |
+
if wrong_window is None:
|
137 |
+
continue
|
138 |
+
|
139 |
+
try:
|
140 |
+
wavpath = join(vidname, "audio.wav")
|
141 |
+
wav = audio.load_wav(wavpath, hparams.sample_rate)
|
142 |
+
|
143 |
+
orig_mel = audio.melspectrogram(wav).T
|
144 |
+
except Exception as e:
|
145 |
+
continue
|
146 |
+
|
147 |
+
mel = self.crop_audio_window(orig_mel.copy(), img_name)
|
148 |
+
|
149 |
+
if (mel.shape[0] != syncnet_mel_step_size):
|
150 |
+
continue
|
151 |
+
|
152 |
+
indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name)
|
153 |
+
if indiv_mels is None: continue
|
154 |
+
|
155 |
+
window = self.prepare_window(window)
|
156 |
+
y = window.copy()
|
157 |
+
window[:, :, window.shape[2]//2:] = 0.
|
158 |
+
|
159 |
+
wrong_window = self.prepare_window(wrong_window)
|
160 |
+
x = np.concatenate([window, wrong_window], axis=0)
|
161 |
+
|
162 |
+
x = torch.FloatTensor(x)
|
163 |
+
mel = torch.FloatTensor(mel.T).unsqueeze(0)
|
164 |
+
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1)
|
165 |
+
y = torch.FloatTensor(y)
|
166 |
+
return x, indiv_mels, mel, y
|
167 |
+
|
168 |
+
def save_sample_images(x, g, gt, global_step, checkpoint_dir):
|
169 |
+
x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
|
170 |
+
g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
|
171 |
+
gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
|
172 |
+
|
173 |
+
refs, inps = x[..., 3:], x[..., :3]
|
174 |
+
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step))
|
175 |
+
if not os.path.exists(folder): os.mkdir(folder)
|
176 |
+
collage = np.concatenate((refs, inps, g, gt), axis=-2)
|
177 |
+
for batch_idx, c in enumerate(collage):
|
178 |
+
for t in range(len(c)):
|
179 |
+
cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t])
|
180 |
+
|
181 |
+
logloss = nn.BCELoss()
|
182 |
+
def cosine_loss(a, v, y):
|
183 |
+
d = nn.functional.cosine_similarity(a, v)
|
184 |
+
loss = logloss(d.unsqueeze(1), y)
|
185 |
+
|
186 |
+
return loss
|
187 |
+
|
188 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
189 |
+
syncnet = SyncNet().to(device)
|
190 |
+
for p in syncnet.parameters():
|
191 |
+
p.requires_grad = False
|
192 |
+
|
193 |
+
recon_loss = nn.L1Loss()
|
194 |
+
def get_sync_loss(mel, g):
|
195 |
+
g = g[:, :, :, g.size(3)//2:]
|
196 |
+
g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1)
|
197 |
+
# B, 3 * T, H//2, W
|
198 |
+
a, v = syncnet(mel, g)
|
199 |
+
y = torch.ones(g.size(0), 1).float().to(device)
|
200 |
+
return cosine_loss(a, v, y)
|
201 |
+
|
202 |
+
def train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
|
203 |
+
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
|
204 |
+
global global_step, global_epoch
|
205 |
+
resumed_step = global_step
|
206 |
+
|
207 |
+
while global_epoch < nepochs:
|
208 |
+
print('Starting Epoch: {}'.format(global_epoch))
|
209 |
+
running_sync_loss, running_l1_loss, disc_loss, running_perceptual_loss = 0., 0., 0., 0.
|
210 |
+
running_disc_real_loss, running_disc_fake_loss = 0., 0.
|
211 |
+
prog_bar = tqdm(enumerate(train_data_loader))
|
212 |
+
for step, (x, indiv_mels, mel, gt) in prog_bar:
|
213 |
+
disc.train()
|
214 |
+
model.train()
|
215 |
+
|
216 |
+
x = x.to(device)
|
217 |
+
mel = mel.to(device)
|
218 |
+
indiv_mels = indiv_mels.to(device)
|
219 |
+
gt = gt.to(device)
|
220 |
+
|
221 |
+
### Train generator now. Remove ALL grads.
|
222 |
+
optimizer.zero_grad()
|
223 |
+
disc_optimizer.zero_grad()
|
224 |
+
|
225 |
+
g = model(indiv_mels, x)
|
226 |
+
|
227 |
+
if hparams.syncnet_wt > 0.:
|
228 |
+
sync_loss = get_sync_loss(mel, g)
|
229 |
+
else:
|
230 |
+
sync_loss = 0.
|
231 |
+
|
232 |
+
if hparams.disc_wt > 0.:
|
233 |
+
perceptual_loss = disc.perceptual_forward(g)
|
234 |
+
else:
|
235 |
+
perceptual_loss = 0.
|
236 |
+
|
237 |
+
l1loss = recon_loss(g, gt)
|
238 |
+
|
239 |
+
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
|
240 |
+
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
|
241 |
+
|
242 |
+
loss.backward()
|
243 |
+
optimizer.step()
|
244 |
+
|
245 |
+
### Remove all gradients before Training disc
|
246 |
+
disc_optimizer.zero_grad()
|
247 |
+
|
248 |
+
pred = disc(gt)
|
249 |
+
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
|
250 |
+
disc_real_loss.backward()
|
251 |
+
|
252 |
+
pred = disc(g.detach())
|
253 |
+
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
|
254 |
+
disc_fake_loss.backward()
|
255 |
+
|
256 |
+
disc_optimizer.step()
|
257 |
+
|
258 |
+
running_disc_real_loss += disc_real_loss.item()
|
259 |
+
running_disc_fake_loss += disc_fake_loss.item()
|
260 |
+
|
261 |
+
if global_step % checkpoint_interval == 0:
|
262 |
+
save_sample_images(x, g, gt, global_step, checkpoint_dir)
|
263 |
+
|
264 |
+
# Logs
|
265 |
+
global_step += 1
|
266 |
+
cur_session_steps = global_step - resumed_step
|
267 |
+
|
268 |
+
running_l1_loss += l1loss.item()
|
269 |
+
if hparams.syncnet_wt > 0.:
|
270 |
+
running_sync_loss += sync_loss.item()
|
271 |
+
else:
|
272 |
+
running_sync_loss += 0.
|
273 |
+
|
274 |
+
if hparams.disc_wt > 0.:
|
275 |
+
running_perceptual_loss += perceptual_loss.item()
|
276 |
+
else:
|
277 |
+
running_perceptual_loss += 0.
|
278 |
+
|
279 |
+
if global_step == 1 or global_step % checkpoint_interval == 0:
|
280 |
+
save_checkpoint(
|
281 |
+
model, optimizer, global_step, checkpoint_dir, global_epoch)
|
282 |
+
save_checkpoint(disc, disc_optimizer, global_step, checkpoint_dir, global_epoch, prefix='disc_')
|
283 |
+
|
284 |
+
|
285 |
+
if global_step % hparams.eval_interval == 0:
|
286 |
+
with torch.no_grad():
|
287 |
+
average_sync_loss = eval_model(test_data_loader, global_step, device, model, disc)
|
288 |
+
|
289 |
+
if average_sync_loss < .75:
|
290 |
+
hparams.set_hparam('syncnet_wt', 0.03)
|
291 |
+
|
292 |
+
prog_bar.set_description('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(running_l1_loss / (step + 1),
|
293 |
+
running_sync_loss / (step + 1),
|
294 |
+
running_perceptual_loss / (step + 1),
|
295 |
+
running_disc_fake_loss / (step + 1),
|
296 |
+
running_disc_real_loss / (step + 1)))
|
297 |
+
|
298 |
+
global_epoch += 1
|
299 |
+
|
300 |
+
def eval_model(test_data_loader, global_step, device, model, disc):
|
301 |
+
eval_steps = 300
|
302 |
+
print('Evaluating for {} steps'.format(eval_steps))
|
303 |
+
running_sync_loss, running_l1_loss, running_disc_real_loss, running_disc_fake_loss, running_perceptual_loss = [], [], [], [], []
|
304 |
+
while 1:
|
305 |
+
for step, (x, indiv_mels, mel, gt) in enumerate((test_data_loader)):
|
306 |
+
model.eval()
|
307 |
+
disc.eval()
|
308 |
+
|
309 |
+
x = x.to(device)
|
310 |
+
mel = mel.to(device)
|
311 |
+
indiv_mels = indiv_mels.to(device)
|
312 |
+
gt = gt.to(device)
|
313 |
+
|
314 |
+
pred = disc(gt)
|
315 |
+
disc_real_loss = F.binary_cross_entropy(pred, torch.ones((len(pred), 1)).to(device))
|
316 |
+
|
317 |
+
g = model(indiv_mels, x)
|
318 |
+
pred = disc(g)
|
319 |
+
disc_fake_loss = F.binary_cross_entropy(pred, torch.zeros((len(pred), 1)).to(device))
|
320 |
+
|
321 |
+
running_disc_real_loss.append(disc_real_loss.item())
|
322 |
+
running_disc_fake_loss.append(disc_fake_loss.item())
|
323 |
+
|
324 |
+
sync_loss = get_sync_loss(mel, g)
|
325 |
+
|
326 |
+
if hparams.disc_wt > 0.:
|
327 |
+
perceptual_loss = disc.perceptual_forward(g)
|
328 |
+
else:
|
329 |
+
perceptual_loss = 0.
|
330 |
+
|
331 |
+
l1loss = recon_loss(g, gt)
|
332 |
+
|
333 |
+
loss = hparams.syncnet_wt * sync_loss + hparams.disc_wt * perceptual_loss + \
|
334 |
+
(1. - hparams.syncnet_wt - hparams.disc_wt) * l1loss
|
335 |
+
|
336 |
+
running_l1_loss.append(l1loss.item())
|
337 |
+
running_sync_loss.append(sync_loss.item())
|
338 |
+
|
339 |
+
if hparams.disc_wt > 0.:
|
340 |
+
running_perceptual_loss.append(perceptual_loss.item())
|
341 |
+
else:
|
342 |
+
running_perceptual_loss.append(0.)
|
343 |
+
|
344 |
+
if step > eval_steps: break
|
345 |
+
|
346 |
+
print('L1: {}, Sync: {}, Percep: {} | Fake: {}, Real: {}'.format(sum(running_l1_loss) / len(running_l1_loss),
|
347 |
+
sum(running_sync_loss) / len(running_sync_loss),
|
348 |
+
sum(running_perceptual_loss) / len(running_perceptual_loss),
|
349 |
+
sum(running_disc_fake_loss) / len(running_disc_fake_loss),
|
350 |
+
sum(running_disc_real_loss) / len(running_disc_real_loss)))
|
351 |
+
return sum(running_sync_loss) / len(running_sync_loss)
|
352 |
+
|
353 |
+
|
354 |
+
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch, prefix=''):
|
355 |
+
checkpoint_path = join(
|
356 |
+
checkpoint_dir, "{}checkpoint_step{:09d}.pth".format(prefix, global_step))
|
357 |
+
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
|
358 |
+
torch.save({
|
359 |
+
"state_dict": model.state_dict(),
|
360 |
+
"optimizer": optimizer_state,
|
361 |
+
"global_step": step,
|
362 |
+
"global_epoch": epoch,
|
363 |
+
}, checkpoint_path)
|
364 |
+
print("Saved checkpoint:", checkpoint_path)
|
365 |
+
|
366 |
+
def _load(checkpoint_path):
|
367 |
+
if use_cuda:
|
368 |
+
checkpoint = torch.load(checkpoint_path)
|
369 |
+
else:
|
370 |
+
checkpoint = torch.load(checkpoint_path,
|
371 |
+
map_location=lambda storage, loc: storage)
|
372 |
+
return checkpoint
|
373 |
+
|
374 |
+
|
375 |
+
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True):
|
376 |
+
global global_step
|
377 |
+
global global_epoch
|
378 |
+
|
379 |
+
print("Load checkpoint from: {}".format(path))
|
380 |
+
checkpoint = _load(path)
|
381 |
+
s = checkpoint["state_dict"]
|
382 |
+
new_s = {}
|
383 |
+
for k, v in s.items():
|
384 |
+
new_s[k.replace('module.', '')] = v
|
385 |
+
model.load_state_dict(new_s)
|
386 |
+
if not reset_optimizer:
|
387 |
+
optimizer_state = checkpoint["optimizer"]
|
388 |
+
if optimizer_state is not None:
|
389 |
+
print("Load optimizer state from {}".format(path))
|
390 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
391 |
+
if overwrite_global_states:
|
392 |
+
global_step = checkpoint["global_step"]
|
393 |
+
global_epoch = checkpoint["global_epoch"]
|
394 |
+
|
395 |
+
return model
|
396 |
+
|
397 |
+
if __name__ == "__main__":
|
398 |
+
checkpoint_dir = args.checkpoint_dir
|
399 |
+
|
400 |
+
# Dataset and Dataloader setup
|
401 |
+
train_dataset = Dataset('train')
|
402 |
+
test_dataset = Dataset('val')
|
403 |
+
|
404 |
+
train_data_loader = data_utils.DataLoader(
|
405 |
+
train_dataset, batch_size=hparams.batch_size, shuffle=True,
|
406 |
+
num_workers=hparams.num_workers)
|
407 |
+
|
408 |
+
test_data_loader = data_utils.DataLoader(
|
409 |
+
test_dataset, batch_size=hparams.batch_size,
|
410 |
+
num_workers=4)
|
411 |
+
|
412 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
413 |
+
|
414 |
+
# Model
|
415 |
+
model = Wav2Lip().to(device)
|
416 |
+
disc = Wav2Lip_disc_qual().to(device)
|
417 |
+
|
418 |
+
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
|
419 |
+
print('total DISC trainable params {}'.format(sum(p.numel() for p in disc.parameters() if p.requires_grad)))
|
420 |
+
|
421 |
+
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
|
422 |
+
lr=hparams.initial_learning_rate, betas=(0.5, 0.999))
|
423 |
+
disc_optimizer = optim.Adam([p for p in disc.parameters() if p.requires_grad],
|
424 |
+
lr=hparams.disc_initial_learning_rate, betas=(0.5, 0.999))
|
425 |
+
|
426 |
+
if args.checkpoint_path is not None:
|
427 |
+
load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False)
|
428 |
+
|
429 |
+
if args.disc_checkpoint_path is not None:
|
430 |
+
load_checkpoint(args.disc_checkpoint_path, disc, disc_optimizer,
|
431 |
+
reset_optimizer=False, overwrite_global_states=False)
|
432 |
+
|
433 |
+
load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True,
|
434 |
+
overwrite_global_states=False)
|
435 |
+
|
436 |
+
if not os.path.exists(checkpoint_dir):
|
437 |
+
os.mkdir(checkpoint_dir)
|
438 |
+
|
439 |
+
# Train!
|
440 |
+
train(device, model, disc, train_data_loader, test_data_loader, optimizer, disc_optimizer,
|
441 |
+
checkpoint_dir=checkpoint_dir,
|
442 |
+
checkpoint_interval=hparams.checkpoint_interval,
|
443 |
+
nepochs=hparams.nepochs)
|
inference.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import listdir, path
|
2 |
+
import numpy as np
|
3 |
+
import scipy, cv2, os, sys, argparse, audio
|
4 |
+
import json, subprocess, random, string
|
5 |
+
from tqdm import tqdm
|
6 |
+
from glob import glob
|
7 |
+
import torch, face_detection
|
8 |
+
from models import Wav2Lip
|
9 |
+
import platform
|
10 |
+
|
11 |
+
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')
|
12 |
+
|
13 |
+
parser.add_argument('--checkpoint_path', type=str,
|
14 |
+
help='Name of saved checkpoint to load weights from', required=True)
|
15 |
+
|
16 |
+
parser.add_argument('--face', type=str,
|
17 |
+
help='Filepath of video/image that contains faces to use', required=True)
|
18 |
+
parser.add_argument('--audio', type=str,
|
19 |
+
help='Filepath of video/audio file to use as raw audio source', required=True)
|
20 |
+
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.',
|
21 |
+
default='results/result_voice.mp4')
|
22 |
+
|
23 |
+
parser.add_argument('--static', type=bool,
|
24 |
+
help='If True, then use only first video frame for inference', default=False)
|
25 |
+
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)',
|
26 |
+
default=25., required=False)
|
27 |
+
|
28 |
+
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0],
|
29 |
+
help='Padding (top, bottom, left, right). Please adjust to include chin at least')
|
30 |
+
|
31 |
+
parser.add_argument('--face_det_batch_size', type=int,
|
32 |
+
help='Batch size for face detection', default=16)
|
33 |
+
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128)
|
34 |
+
|
35 |
+
parser.add_argument('--resize_factor', default=1, type=int,
|
36 |
+
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')
|
37 |
+
|
38 |
+
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1],
|
39 |
+
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. '
|
40 |
+
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')
|
41 |
+
|
42 |
+
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1],
|
43 |
+
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.'
|
44 |
+
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')
|
45 |
+
|
46 |
+
parser.add_argument('--rotate', default=False, action='store_true',
|
47 |
+
help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.'
|
48 |
+
'Use if you get a flipped result, despite feeding a normal looking video')
|
49 |
+
|
50 |
+
parser.add_argument('--nosmooth', default=False, action='store_true',
|
51 |
+
help='Prevent smoothing face detections over a short temporal window')
|
52 |
+
|
53 |
+
args = parser.parse_args()
|
54 |
+
args.img_size = 96
|
55 |
+
|
56 |
+
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
|
57 |
+
args.static = True
|
58 |
+
|
59 |
+
def get_smoothened_boxes(boxes, T):
|
60 |
+
for i in range(len(boxes)):
|
61 |
+
if i + T > len(boxes):
|
62 |
+
window = boxes[len(boxes) - T:]
|
63 |
+
else:
|
64 |
+
window = boxes[i : i + T]
|
65 |
+
boxes[i] = np.mean(window, axis=0)
|
66 |
+
return boxes
|
67 |
+
|
68 |
+
def face_detect(images):
|
69 |
+
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D,
|
70 |
+
flip_input=False, device=device)
|
71 |
+
|
72 |
+
batch_size = args.face_det_batch_size
|
73 |
+
|
74 |
+
while 1:
|
75 |
+
predictions = []
|
76 |
+
try:
|
77 |
+
for i in tqdm(range(0, len(images), batch_size)):
|
78 |
+
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
|
79 |
+
except RuntimeError:
|
80 |
+
if batch_size == 1:
|
81 |
+
raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
|
82 |
+
batch_size //= 2
|
83 |
+
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
|
84 |
+
continue
|
85 |
+
break
|
86 |
+
|
87 |
+
results = []
|
88 |
+
pady1, pady2, padx1, padx2 = args.pads
|
89 |
+
for rect, image in zip(predictions, images):
|
90 |
+
if rect is None:
|
91 |
+
cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
|
92 |
+
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')
|
93 |
+
|
94 |
+
y1 = max(0, rect[1] - pady1)
|
95 |
+
y2 = min(image.shape[0], rect[3] + pady2)
|
96 |
+
x1 = max(0, rect[0] - padx1)
|
97 |
+
x2 = min(image.shape[1], rect[2] + padx2)
|
98 |
+
|
99 |
+
results.append([x1, y1, x2, y2])
|
100 |
+
|
101 |
+
boxes = np.array(results)
|
102 |
+
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
|
103 |
+
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]
|
104 |
+
|
105 |
+
del detector
|
106 |
+
return results
|
107 |
+
|
108 |
+
def datagen(frames, mels):
|
109 |
+
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
110 |
+
|
111 |
+
if args.box[0] == -1:
|
112 |
+
if not args.static:
|
113 |
+
face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
|
114 |
+
else:
|
115 |
+
face_det_results = face_detect([frames[0]])
|
116 |
+
else:
|
117 |
+
print('Using the specified bounding box instead of face detection...')
|
118 |
+
y1, y2, x1, x2 = args.box
|
119 |
+
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
|
120 |
+
|
121 |
+
for i, m in enumerate(mels):
|
122 |
+
idx = 0 if args.static else i%len(frames)
|
123 |
+
frame_to_save = frames[idx].copy()
|
124 |
+
face, coords = face_det_results[idx].copy()
|
125 |
+
|
126 |
+
face = cv2.resize(face, (args.img_size, args.img_size))
|
127 |
+
|
128 |
+
img_batch.append(face)
|
129 |
+
mel_batch.append(m)
|
130 |
+
frame_batch.append(frame_to_save)
|
131 |
+
coords_batch.append(coords)
|
132 |
+
|
133 |
+
if len(img_batch) >= args.wav2lip_batch_size:
|
134 |
+
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
135 |
+
|
136 |
+
img_masked = img_batch.copy()
|
137 |
+
img_masked[:, args.img_size//2:] = 0
|
138 |
+
|
139 |
+
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
140 |
+
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
141 |
+
|
142 |
+
yield img_batch, mel_batch, frame_batch, coords_batch
|
143 |
+
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
144 |
+
|
145 |
+
if len(img_batch) > 0:
|
146 |
+
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
147 |
+
|
148 |
+
img_masked = img_batch.copy()
|
149 |
+
img_masked[:, args.img_size//2:] = 0
|
150 |
+
|
151 |
+
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
|
152 |
+
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])
|
153 |
+
|
154 |
+
yield img_batch, mel_batch, frame_batch, coords_batch
|
155 |
+
|
156 |
+
mel_step_size = 16
|
157 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
158 |
+
print('Using {} for inference.'.format(device))
|
159 |
+
|
160 |
+
def _load(checkpoint_path):
|
161 |
+
if device == 'cuda':
|
162 |
+
checkpoint = torch.load(checkpoint_path)
|
163 |
+
else:
|
164 |
+
checkpoint = torch.load(checkpoint_path,
|
165 |
+
map_location=lambda storage, loc: storage)
|
166 |
+
return checkpoint
|
167 |
+
|
168 |
+
def load_model(path):
|
169 |
+
model = Wav2Lip()
|
170 |
+
print("Load checkpoint from: {}".format(path))
|
171 |
+
checkpoint = _load(path)
|
172 |
+
s = checkpoint["state_dict"]
|
173 |
+
new_s = {}
|
174 |
+
for k, v in s.items():
|
175 |
+
new_s[k.replace('module.', '')] = v
|
176 |
+
model.load_state_dict(new_s)
|
177 |
+
|
178 |
+
model = model.to(device)
|
179 |
+
return model.eval()
|
180 |
+
|
181 |
+
def main():
|
182 |
+
if not os.path.isfile(args.face):
|
183 |
+
raise ValueError('--face argument must be a valid path to video/image file')
|
184 |
+
|
185 |
+
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:
|
186 |
+
full_frames = [cv2.imread(args.face)]
|
187 |
+
fps = args.fps
|
188 |
+
|
189 |
+
else:
|
190 |
+
video_stream = cv2.VideoCapture(args.face)
|
191 |
+
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
192 |
+
|
193 |
+
print('Reading video frames...')
|
194 |
+
|
195 |
+
full_frames = []
|
196 |
+
while 1:
|
197 |
+
still_reading, frame = video_stream.read()
|
198 |
+
if not still_reading:
|
199 |
+
video_stream.release()
|
200 |
+
break
|
201 |
+
if args.resize_factor > 1:
|
202 |
+
frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor))
|
203 |
+
|
204 |
+
if args.rotate:
|
205 |
+
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
|
206 |
+
|
207 |
+
y1, y2, x1, x2 = args.crop
|
208 |
+
if x2 == -1: x2 = frame.shape[1]
|
209 |
+
if y2 == -1: y2 = frame.shape[0]
|
210 |
+
|
211 |
+
frame = frame[y1:y2, x1:x2]
|
212 |
+
|
213 |
+
full_frames.append(frame)
|
214 |
+
|
215 |
+
print ("Number of frames available for inference: "+str(len(full_frames)))
|
216 |
+
|
217 |
+
if not args.audio.endswith('.wav'):
|
218 |
+
print('Extracting raw audio...')
|
219 |
+
command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav')
|
220 |
+
|
221 |
+
subprocess.call(command, shell=True)
|
222 |
+
args.audio = 'temp/temp.wav'
|
223 |
+
|
224 |
+
wav = audio.load_wav(args.audio, 16000)
|
225 |
+
mel = audio.melspectrogram(wav)
|
226 |
+
print(mel.shape)
|
227 |
+
|
228 |
+
if np.isnan(mel.reshape(-1)).sum() > 0:
|
229 |
+
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')
|
230 |
+
|
231 |
+
mel_chunks = []
|
232 |
+
mel_idx_multiplier = 80./fps
|
233 |
+
i = 0
|
234 |
+
while 1:
|
235 |
+
start_idx = int(i * mel_idx_multiplier)
|
236 |
+
if start_idx + mel_step_size > len(mel[0]):
|
237 |
+
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
|
238 |
+
break
|
239 |
+
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
240 |
+
i += 1
|
241 |
+
|
242 |
+
print("Length of mel chunks: {}".format(len(mel_chunks)))
|
243 |
+
|
244 |
+
full_frames = full_frames[:len(mel_chunks)]
|
245 |
+
|
246 |
+
batch_size = args.wav2lip_batch_size
|
247 |
+
gen = datagen(full_frames.copy(), mel_chunks)
|
248 |
+
|
249 |
+
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen,
|
250 |
+
total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
|
251 |
+
if i == 0:
|
252 |
+
model = load_model(args.checkpoint_path)
|
253 |
+
print ("Model loaded")
|
254 |
+
|
255 |
+
frame_h, frame_w = full_frames[0].shape[:-1]
|
256 |
+
out = cv2.VideoWriter('temp/result.avi',
|
257 |
+
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))
|
258 |
+
|
259 |
+
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
|
260 |
+
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)
|
261 |
+
|
262 |
+
with torch.no_grad():
|
263 |
+
pred = model(mel_batch, img_batch)
|
264 |
+
|
265 |
+
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
|
266 |
+
|
267 |
+
for p, f, c in zip(pred, frames, coords):
|
268 |
+
y1, y2, x1, x2 = c
|
269 |
+
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
270 |
+
|
271 |
+
f[y1:y2, x1:x2] = p
|
272 |
+
out.write(f)
|
273 |
+
|
274 |
+
out.release()
|
275 |
+
|
276 |
+
command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/result.avi', args.outfile)
|
277 |
+
subprocess.call(command, shell=platform.system() != 'Windows')
|
278 |
+
|
279 |
+
if __name__ == '__main__':
|
280 |
+
main()
|
preprocess.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
if sys.version_info[0] < 3 and sys.version_info[1] < 2:
|
4 |
+
raise Exception("Must be using >= Python 3.2")
|
5 |
+
|
6 |
+
from os import listdir, path
|
7 |
+
|
8 |
+
if not path.isfile('face_detection/detection/sfd/s3fd.pth'):
|
9 |
+
raise FileNotFoundError('Save the s3fd model to face_detection/detection/sfd/s3fd.pth \
|
10 |
+
before running this script!')
|
11 |
+
|
12 |
+
import multiprocessing as mp
|
13 |
+
from concurrent.futures import ThreadPoolExecutor, as_completed
|
14 |
+
import numpy as np
|
15 |
+
import argparse, os, cv2, traceback, subprocess
|
16 |
+
from tqdm import tqdm
|
17 |
+
from glob import glob
|
18 |
+
import audio
|
19 |
+
from hparams import hparams as hp
|
20 |
+
|
21 |
+
import face_detection
|
22 |
+
|
23 |
+
parser = argparse.ArgumentParser()
|
24 |
+
|
25 |
+
parser.add_argument('--ngpu', help='Number of GPUs across which to run in parallel', default=1, type=int)
|
26 |
+
parser.add_argument('--batch_size', help='Single GPU Face detection batch size', default=32, type=int)
|
27 |
+
parser.add_argument("--data_root", help="Root folder of the LRS2 dataset", required=True)
|
28 |
+
parser.add_argument("--preprocessed_root", help="Root folder of the preprocessed dataset", required=True)
|
29 |
+
|
30 |
+
args = parser.parse_args()
|
31 |
+
|
32 |
+
fa = [face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False,
|
33 |
+
device='cuda:{}'.format(id)) for id in range(args.ngpu)]
|
34 |
+
|
35 |
+
template = 'ffmpeg -loglevel panic -y -i {} -strict -2 {}'
|
36 |
+
# template2 = 'ffmpeg -hide_banner -loglevel panic -threads 1 -y -i {} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {}'
|
37 |
+
|
38 |
+
def process_video_file(vfile, args, gpu_id):
|
39 |
+
video_stream = cv2.VideoCapture(vfile)
|
40 |
+
|
41 |
+
frames = []
|
42 |
+
while 1:
|
43 |
+
still_reading, frame = video_stream.read()
|
44 |
+
if not still_reading:
|
45 |
+
video_stream.release()
|
46 |
+
break
|
47 |
+
frames.append(frame)
|
48 |
+
|
49 |
+
vidname = os.path.basename(vfile).split('.')[0]
|
50 |
+
dirname = vfile.split('/')[-2]
|
51 |
+
|
52 |
+
fulldir = path.join(args.preprocessed_root, dirname, vidname)
|
53 |
+
os.makedirs(fulldir, exist_ok=True)
|
54 |
+
|
55 |
+
batches = [frames[i:i + args.batch_size] for i in range(0, len(frames), args.batch_size)]
|
56 |
+
|
57 |
+
i = -1
|
58 |
+
for fb in batches:
|
59 |
+
preds = fa[gpu_id].get_detections_for_batch(np.asarray(fb))
|
60 |
+
|
61 |
+
for j, f in enumerate(preds):
|
62 |
+
i += 1
|
63 |
+
if f is None:
|
64 |
+
continue
|
65 |
+
|
66 |
+
x1, y1, x2, y2 = f
|
67 |
+
cv2.imwrite(path.join(fulldir, '{}.jpg'.format(i)), fb[j][y1:y2, x1:x2])
|
68 |
+
|
69 |
+
def process_audio_file(vfile, args):
|
70 |
+
vidname = os.path.basename(vfile).split('.')[0]
|
71 |
+
dirname = vfile.split('/')[-2]
|
72 |
+
|
73 |
+
fulldir = path.join(args.preprocessed_root, dirname, vidname)
|
74 |
+
os.makedirs(fulldir, exist_ok=True)
|
75 |
+
|
76 |
+
wavpath = path.join(fulldir, 'audio.wav')
|
77 |
+
|
78 |
+
command = template.format(vfile, wavpath)
|
79 |
+
subprocess.call(command, shell=True)
|
80 |
+
|
81 |
+
|
82 |
+
def mp_handler(job):
|
83 |
+
vfile, args, gpu_id = job
|
84 |
+
try:
|
85 |
+
process_video_file(vfile, args, gpu_id)
|
86 |
+
except KeyboardInterrupt:
|
87 |
+
exit(0)
|
88 |
+
except:
|
89 |
+
traceback.print_exc()
|
90 |
+
|
91 |
+
def main(args):
|
92 |
+
print('Started processing for {} with {} GPUs'.format(args.data_root, args.ngpu))
|
93 |
+
|
94 |
+
filelist = glob(path.join(args.data_root, '*/*.mp4'))
|
95 |
+
|
96 |
+
jobs = [(vfile, args, i%args.ngpu) for i, vfile in enumerate(filelist)]
|
97 |
+
p = ThreadPoolExecutor(args.ngpu)
|
98 |
+
futures = [p.submit(mp_handler, j) for j in jobs]
|
99 |
+
_ = [r.result() for r in tqdm(as_completed(futures), total=len(futures))]
|
100 |
+
|
101 |
+
print('Dumping audios...')
|
102 |
+
|
103 |
+
for vfile in tqdm(filelist):
|
104 |
+
try:
|
105 |
+
process_audio_file(vfile, args)
|
106 |
+
except KeyboardInterrupt:
|
107 |
+
exit(0)
|
108 |
+
except:
|
109 |
+
traceback.print_exc()
|
110 |
+
continue
|
111 |
+
|
112 |
+
if __name__ == '__main__':
|
113 |
+
main(args)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa==0.7.0
|
2 |
+
numpy==1.17.1
|
3 |
+
opencv-contrib-python>=4.2.0.34
|
4 |
+
opencv-python==4.3.0.38
|
5 |
+
torch==1.11.0
|
6 |
+
torchvision==0.12.0
|
7 |
+
tqdm==4.45.0
|
8 |
+
numba==0.48
|
wav2lip_train.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import dirname, join, basename, isfile
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
from models import SyncNet_color as SyncNet
|
5 |
+
from models import Wav2Lip as Wav2Lip
|
6 |
+
import audio
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch import optim
|
11 |
+
import torch.backends.cudnn as cudnn
|
12 |
+
from torch.utils import data as data_utils
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from glob import glob
|
16 |
+
|
17 |
+
import os, random, cv2, argparse
|
18 |
+
from hparams import hparams, get_image_list
|
19 |
+
|
20 |
+
parser = argparse.ArgumentParser(description='Code to train the Wav2Lip model without the visual quality discriminator')
|
21 |
+
|
22 |
+
parser.add_argument("--data_root", help="Root folder of the preprocessed LRS2 dataset", required=True, type=str)
|
23 |
+
|
24 |
+
parser.add_argument('--checkpoint_dir', help='Save checkpoints to this directory', required=True, type=str)
|
25 |
+
parser.add_argument('--syncnet_checkpoint_path', help='Load the pre-trained Expert discriminator', required=True, type=str)
|
26 |
+
|
27 |
+
parser.add_argument('--checkpoint_path', help='Resume from this checkpoint', default=None, type=str)
|
28 |
+
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
|
32 |
+
global_step = 0
|
33 |
+
global_epoch = 0
|
34 |
+
use_cuda = torch.cuda.is_available()
|
35 |
+
print('use_cuda: {}'.format(use_cuda))
|
36 |
+
|
37 |
+
syncnet_T = 5
|
38 |
+
syncnet_mel_step_size = 16
|
39 |
+
|
40 |
+
class Dataset(object):
|
41 |
+
def __init__(self, split):
|
42 |
+
self.all_videos = get_image_list(args.data_root, split)
|
43 |
+
|
44 |
+
def get_frame_id(self, frame):
|
45 |
+
return int(basename(frame).split('.')[0])
|
46 |
+
|
47 |
+
def get_window(self, start_frame):
|
48 |
+
start_id = self.get_frame_id(start_frame)
|
49 |
+
vidname = dirname(start_frame)
|
50 |
+
|
51 |
+
window_fnames = []
|
52 |
+
for frame_id in range(start_id, start_id + syncnet_T):
|
53 |
+
frame = join(vidname, '{}.jpg'.format(frame_id))
|
54 |
+
if not isfile(frame):
|
55 |
+
return None
|
56 |
+
window_fnames.append(frame)
|
57 |
+
return window_fnames
|
58 |
+
|
59 |
+
def read_window(self, window_fnames):
|
60 |
+
if window_fnames is None: return None
|
61 |
+
window = []
|
62 |
+
for fname in window_fnames:
|
63 |
+
img = cv2.imread(fname)
|
64 |
+
if img is None:
|
65 |
+
return None
|
66 |
+
try:
|
67 |
+
img = cv2.resize(img, (hparams.img_size, hparams.img_size))
|
68 |
+
except Exception as e:
|
69 |
+
return None
|
70 |
+
|
71 |
+
window.append(img)
|
72 |
+
|
73 |
+
return window
|
74 |
+
|
75 |
+
def crop_audio_window(self, spec, start_frame):
|
76 |
+
if type(start_frame) == int:
|
77 |
+
start_frame_num = start_frame
|
78 |
+
else:
|
79 |
+
start_frame_num = self.get_frame_id(start_frame) # 0-indexing ---> 1-indexing
|
80 |
+
start_idx = int(80. * (start_frame_num / float(hparams.fps)))
|
81 |
+
|
82 |
+
end_idx = start_idx + syncnet_mel_step_size
|
83 |
+
|
84 |
+
return spec[start_idx : end_idx, :]
|
85 |
+
|
86 |
+
def get_segmented_mels(self, spec, start_frame):
|
87 |
+
mels = []
|
88 |
+
assert syncnet_T == 5
|
89 |
+
start_frame_num = self.get_frame_id(start_frame) + 1 # 0-indexing ---> 1-indexing
|
90 |
+
if start_frame_num - 2 < 0: return None
|
91 |
+
for i in range(start_frame_num, start_frame_num + syncnet_T):
|
92 |
+
m = self.crop_audio_window(spec, i - 2)
|
93 |
+
if m.shape[0] != syncnet_mel_step_size:
|
94 |
+
return None
|
95 |
+
mels.append(m.T)
|
96 |
+
|
97 |
+
mels = np.asarray(mels)
|
98 |
+
|
99 |
+
return mels
|
100 |
+
|
101 |
+
def prepare_window(self, window):
|
102 |
+
# 3 x T x H x W
|
103 |
+
x = np.asarray(window) / 255.
|
104 |
+
x = np.transpose(x, (3, 0, 1, 2))
|
105 |
+
|
106 |
+
return x
|
107 |
+
|
108 |
+
def __len__(self):
|
109 |
+
return len(self.all_videos)
|
110 |
+
|
111 |
+
def __getitem__(self, idx):
|
112 |
+
while 1:
|
113 |
+
idx = random.randint(0, len(self.all_videos) - 1)
|
114 |
+
vidname = self.all_videos[idx]
|
115 |
+
img_names = list(glob(join(vidname, '*.jpg')))
|
116 |
+
if len(img_names) <= 3 * syncnet_T:
|
117 |
+
continue
|
118 |
+
|
119 |
+
img_name = random.choice(img_names)
|
120 |
+
wrong_img_name = random.choice(img_names)
|
121 |
+
while wrong_img_name == img_name:
|
122 |
+
wrong_img_name = random.choice(img_names)
|
123 |
+
|
124 |
+
window_fnames = self.get_window(img_name)
|
125 |
+
wrong_window_fnames = self.get_window(wrong_img_name)
|
126 |
+
if window_fnames is None or wrong_window_fnames is None:
|
127 |
+
continue
|
128 |
+
|
129 |
+
window = self.read_window(window_fnames)
|
130 |
+
if window is None:
|
131 |
+
continue
|
132 |
+
|
133 |
+
wrong_window = self.read_window(wrong_window_fnames)
|
134 |
+
if wrong_window is None:
|
135 |
+
continue
|
136 |
+
|
137 |
+
try:
|
138 |
+
wavpath = join(vidname, "audio.wav")
|
139 |
+
wav = audio.load_wav(wavpath, hparams.sample_rate)
|
140 |
+
|
141 |
+
orig_mel = audio.melspectrogram(wav).T
|
142 |
+
except Exception as e:
|
143 |
+
continue
|
144 |
+
|
145 |
+
mel = self.crop_audio_window(orig_mel.copy(), img_name)
|
146 |
+
|
147 |
+
if (mel.shape[0] != syncnet_mel_step_size):
|
148 |
+
continue
|
149 |
+
|
150 |
+
indiv_mels = self.get_segmented_mels(orig_mel.copy(), img_name)
|
151 |
+
if indiv_mels is None: continue
|
152 |
+
|
153 |
+
window = self.prepare_window(window)
|
154 |
+
y = window.copy()
|
155 |
+
window[:, :, window.shape[2]//2:] = 0.
|
156 |
+
|
157 |
+
wrong_window = self.prepare_window(wrong_window)
|
158 |
+
x = np.concatenate([window, wrong_window], axis=0)
|
159 |
+
|
160 |
+
x = torch.FloatTensor(x)
|
161 |
+
mel = torch.FloatTensor(mel.T).unsqueeze(0)
|
162 |
+
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1)
|
163 |
+
y = torch.FloatTensor(y)
|
164 |
+
return x, indiv_mels, mel, y
|
165 |
+
|
166 |
+
def save_sample_images(x, g, gt, global_step, checkpoint_dir):
|
167 |
+
x = (x.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
|
168 |
+
g = (g.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
|
169 |
+
gt = (gt.detach().cpu().numpy().transpose(0, 2, 3, 4, 1) * 255.).astype(np.uint8)
|
170 |
+
|
171 |
+
refs, inps = x[..., 3:], x[..., :3]
|
172 |
+
folder = join(checkpoint_dir, "samples_step{:09d}".format(global_step))
|
173 |
+
if not os.path.exists(folder): os.mkdir(folder)
|
174 |
+
collage = np.concatenate((refs, inps, g, gt), axis=-2)
|
175 |
+
for batch_idx, c in enumerate(collage):
|
176 |
+
for t in range(len(c)):
|
177 |
+
cv2.imwrite('{}/{}_{}.jpg'.format(folder, batch_idx, t), c[t])
|
178 |
+
|
179 |
+
logloss = nn.BCELoss()
|
180 |
+
def cosine_loss(a, v, y):
|
181 |
+
d = nn.functional.cosine_similarity(a, v)
|
182 |
+
loss = logloss(d.unsqueeze(1), y)
|
183 |
+
|
184 |
+
return loss
|
185 |
+
|
186 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
187 |
+
syncnet = SyncNet().to(device)
|
188 |
+
for p in syncnet.parameters():
|
189 |
+
p.requires_grad = False
|
190 |
+
|
191 |
+
recon_loss = nn.L1Loss()
|
192 |
+
def get_sync_loss(mel, g):
|
193 |
+
g = g[:, :, :, g.size(3)//2:]
|
194 |
+
g = torch.cat([g[:, :, i] for i in range(syncnet_T)], dim=1)
|
195 |
+
# B, 3 * T, H//2, W
|
196 |
+
a, v = syncnet(mel, g)
|
197 |
+
y = torch.ones(g.size(0), 1).float().to(device)
|
198 |
+
return cosine_loss(a, v, y)
|
199 |
+
|
200 |
+
def train(device, model, train_data_loader, test_data_loader, optimizer,
|
201 |
+
checkpoint_dir=None, checkpoint_interval=None, nepochs=None):
|
202 |
+
|
203 |
+
global global_step, global_epoch
|
204 |
+
resumed_step = global_step
|
205 |
+
|
206 |
+
while global_epoch < nepochs:
|
207 |
+
print('Starting Epoch: {}'.format(global_epoch))
|
208 |
+
running_sync_loss, running_l1_loss = 0., 0.
|
209 |
+
prog_bar = tqdm(enumerate(train_data_loader))
|
210 |
+
for step, (x, indiv_mels, mel, gt) in prog_bar:
|
211 |
+
model.train()
|
212 |
+
optimizer.zero_grad()
|
213 |
+
|
214 |
+
# Move data to CUDA device
|
215 |
+
x = x.to(device)
|
216 |
+
mel = mel.to(device)
|
217 |
+
indiv_mels = indiv_mels.to(device)
|
218 |
+
gt = gt.to(device)
|
219 |
+
|
220 |
+
g = model(indiv_mels, x)
|
221 |
+
|
222 |
+
if hparams.syncnet_wt > 0.:
|
223 |
+
sync_loss = get_sync_loss(mel, g)
|
224 |
+
else:
|
225 |
+
sync_loss = 0.
|
226 |
+
|
227 |
+
l1loss = recon_loss(g, gt)
|
228 |
+
|
229 |
+
loss = hparams.syncnet_wt * sync_loss + (1 - hparams.syncnet_wt) * l1loss
|
230 |
+
loss.backward()
|
231 |
+
optimizer.step()
|
232 |
+
|
233 |
+
if global_step % checkpoint_interval == 0:
|
234 |
+
save_sample_images(x, g, gt, global_step, checkpoint_dir)
|
235 |
+
|
236 |
+
global_step += 1
|
237 |
+
cur_session_steps = global_step - resumed_step
|
238 |
+
|
239 |
+
running_l1_loss += l1loss.item()
|
240 |
+
if hparams.syncnet_wt > 0.:
|
241 |
+
running_sync_loss += sync_loss.item()
|
242 |
+
else:
|
243 |
+
running_sync_loss += 0.
|
244 |
+
|
245 |
+
if global_step == 1 or global_step % checkpoint_interval == 0:
|
246 |
+
save_checkpoint(
|
247 |
+
model, optimizer, global_step, checkpoint_dir, global_epoch)
|
248 |
+
|
249 |
+
if global_step == 1 or global_step % hparams.eval_interval == 0:
|
250 |
+
with torch.no_grad():
|
251 |
+
average_sync_loss = eval_model(test_data_loader, global_step, device, model, checkpoint_dir)
|
252 |
+
|
253 |
+
if average_sync_loss < .75:
|
254 |
+
hparams.set_hparam('syncnet_wt', 0.01) # without image GAN a lesser weight is sufficient
|
255 |
+
|
256 |
+
prog_bar.set_description('L1: {}, Sync Loss: {}'.format(running_l1_loss / (step + 1),
|
257 |
+
running_sync_loss / (step + 1)))
|
258 |
+
|
259 |
+
global_epoch += 1
|
260 |
+
|
261 |
+
|
262 |
+
def eval_model(test_data_loader, global_step, device, model, checkpoint_dir):
|
263 |
+
eval_steps = 700
|
264 |
+
print('Evaluating for {} steps'.format(eval_steps))
|
265 |
+
sync_losses, recon_losses = [], []
|
266 |
+
step = 0
|
267 |
+
while 1:
|
268 |
+
for x, indiv_mels, mel, gt in test_data_loader:
|
269 |
+
step += 1
|
270 |
+
model.eval()
|
271 |
+
|
272 |
+
# Move data to CUDA device
|
273 |
+
x = x.to(device)
|
274 |
+
gt = gt.to(device)
|
275 |
+
indiv_mels = indiv_mels.to(device)
|
276 |
+
mel = mel.to(device)
|
277 |
+
|
278 |
+
g = model(indiv_mels, x)
|
279 |
+
|
280 |
+
sync_loss = get_sync_loss(mel, g)
|
281 |
+
l1loss = recon_loss(g, gt)
|
282 |
+
|
283 |
+
sync_losses.append(sync_loss.item())
|
284 |
+
recon_losses.append(l1loss.item())
|
285 |
+
|
286 |
+
if step > eval_steps:
|
287 |
+
averaged_sync_loss = sum(sync_losses) / len(sync_losses)
|
288 |
+
averaged_recon_loss = sum(recon_losses) / len(recon_losses)
|
289 |
+
|
290 |
+
print('L1: {}, Sync loss: {}'.format(averaged_recon_loss, averaged_sync_loss))
|
291 |
+
|
292 |
+
return averaged_sync_loss
|
293 |
+
|
294 |
+
def save_checkpoint(model, optimizer, step, checkpoint_dir, epoch):
|
295 |
+
|
296 |
+
checkpoint_path = join(
|
297 |
+
checkpoint_dir, "checkpoint_step{:09d}.pth".format(global_step))
|
298 |
+
optimizer_state = optimizer.state_dict() if hparams.save_optimizer_state else None
|
299 |
+
torch.save({
|
300 |
+
"state_dict": model.state_dict(),
|
301 |
+
"optimizer": optimizer_state,
|
302 |
+
"global_step": step,
|
303 |
+
"global_epoch": epoch,
|
304 |
+
}, checkpoint_path)
|
305 |
+
print("Saved checkpoint:", checkpoint_path)
|
306 |
+
|
307 |
+
|
308 |
+
def _load(checkpoint_path):
|
309 |
+
if use_cuda:
|
310 |
+
checkpoint = torch.load(checkpoint_path)
|
311 |
+
else:
|
312 |
+
checkpoint = torch.load(checkpoint_path,
|
313 |
+
map_location=lambda storage, loc: storage)
|
314 |
+
return checkpoint
|
315 |
+
|
316 |
+
def load_checkpoint(path, model, optimizer, reset_optimizer=False, overwrite_global_states=True):
|
317 |
+
global global_step
|
318 |
+
global global_epoch
|
319 |
+
|
320 |
+
print("Load checkpoint from: {}".format(path))
|
321 |
+
checkpoint = _load(path)
|
322 |
+
s = checkpoint["state_dict"]
|
323 |
+
new_s = {}
|
324 |
+
for k, v in s.items():
|
325 |
+
new_s[k.replace('module.', '')] = v
|
326 |
+
model.load_state_dict(new_s)
|
327 |
+
if not reset_optimizer:
|
328 |
+
optimizer_state = checkpoint["optimizer"]
|
329 |
+
if optimizer_state is not None:
|
330 |
+
print("Load optimizer state from {}".format(path))
|
331 |
+
optimizer.load_state_dict(checkpoint["optimizer"])
|
332 |
+
if overwrite_global_states:
|
333 |
+
global_step = checkpoint["global_step"]
|
334 |
+
global_epoch = checkpoint["global_epoch"]
|
335 |
+
|
336 |
+
return model
|
337 |
+
|
338 |
+
if __name__ == "__main__":
|
339 |
+
checkpoint_dir = args.checkpoint_dir
|
340 |
+
|
341 |
+
# Dataset and Dataloader setup
|
342 |
+
train_dataset = Dataset('train')
|
343 |
+
test_dataset = Dataset('val')
|
344 |
+
|
345 |
+
train_data_loader = data_utils.DataLoader(
|
346 |
+
train_dataset, batch_size=hparams.batch_size, shuffle=True,
|
347 |
+
num_workers=hparams.num_workers)
|
348 |
+
|
349 |
+
test_data_loader = data_utils.DataLoader(
|
350 |
+
test_dataset, batch_size=hparams.batch_size,
|
351 |
+
num_workers=4)
|
352 |
+
|
353 |
+
device = torch.device("cuda" if use_cuda else "cpu")
|
354 |
+
|
355 |
+
# Model
|
356 |
+
model = Wav2Lip().to(device)
|
357 |
+
print('total trainable params {}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad)))
|
358 |
+
|
359 |
+
optimizer = optim.Adam([p for p in model.parameters() if p.requires_grad],
|
360 |
+
lr=hparams.initial_learning_rate)
|
361 |
+
|
362 |
+
if args.checkpoint_path is not None:
|
363 |
+
load_checkpoint(args.checkpoint_path, model, optimizer, reset_optimizer=False)
|
364 |
+
|
365 |
+
load_checkpoint(args.syncnet_checkpoint_path, syncnet, None, reset_optimizer=True, overwrite_global_states=False)
|
366 |
+
|
367 |
+
if not os.path.exists(checkpoint_dir):
|
368 |
+
os.mkdir(checkpoint_dir)
|
369 |
+
|
370 |
+
# Train!
|
371 |
+
train(device, model, train_data_loader, test_data_loader, optimizer,
|
372 |
+
checkpoint_dir=checkpoint_dir,
|
373 |
+
checkpoint_interval=hparams.checkpoint_interval,
|
374 |
+
nepochs=hparams.nepochs)
|