asofter's picture
* introduce new model
d886d80
raw
history blame
10.4 kB
import argparse
import glob
import json
import logging
import multiprocessing as mp
import os
import time
import uuid
from datetime import timedelta
from functools import lru_cache
from typing import List, Union
import aegis
import boto3
import gradio as gr
import requests
from huggingface_hub import HfApi
from optimum.onnxruntime import ORTModelForSequenceClassification
from rebuff import Rebuff
from transformers import AutoTokenizer, pipeline
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
hf_api = HfApi(token=os.getenv("HF_TOKEN"))
num_processes = 2 # mp.cpu_count()
lakera_api_key = os.getenv("LAKERA_API_KEY")
automorphic_api_key = os.getenv("AUTOMORPHIC_API_KEY")
rebuff_api_key = os.getenv("REBUFF_API_KEY")
azure_content_safety_endpoint = os.getenv("AZURE_CONTENT_SAFETY_ENDPOINT")
azure_content_safety_key = os.getenv("AZURE_CONTENT_SAFETY_KEY")
aws_comprehend_client = boto3.client(service_name="comprehend", region_name="us-east-1")
@lru_cache(maxsize=2)
def init_prompt_injection_model(prompt_injection_ort_model: str, subfolder: str = "") -> pipeline:
hf_model = ORTModelForSequenceClassification.from_pretrained(
prompt_injection_ort_model,
export=False,
subfolder=subfolder,
file_name="model.onnx"
)
hf_tokenizer = AutoTokenizer.from_pretrained(prompt_injection_ort_model, subfolder=subfolder)
hf_tokenizer.model_input_names = ["input_ids", "attention_mask"]
logger.info(f"Initialized classification ONNX model {prompt_injection_ort_model} on CPU")
return pipeline(
"text-classification",
model=hf_model,
tokenizer=hf_tokenizer,
device="cpu",
batch_size=1,
truncation=True,
max_length=512,
)
def convert_elapsed_time(diff_time) -> float:
return round(timedelta(seconds=diff_time).total_seconds(), 2)
deepset_classifier = init_prompt_injection_model(
"ProtectAI/deberta-v3-base-injection-onnx"
) # ONNX version of deepset/deberta-v3-base-injection
protectai_v1_classifier = init_prompt_injection_model(
"ProtectAI/deberta-v3-base-prompt-injection", "onnx"
)
protectai_v2_classifier = init_prompt_injection_model(
"ProtectAI/deberta-v3-base-prompt-injection-v2", "onnx"
)
fmops_classifier = init_prompt_injection_model(
"ProtectAI/fmops-distilbert-prompt-injection-onnx"
) # ONNX version of fmops/distilbert-prompt-injection
def detect_hf(
prompt: str, threshold: float = 0.5, classifier=protectai_v1_classifier, label: str = "INJECTION"
) -> (bool, bool):
try:
pi_result = classifier(prompt)
injection_score = round(
pi_result[0]["score"] if pi_result[0]["label"] == label else 1 - pi_result[0]["score"],
2,
)
logger.info(f"Prompt injection result from the HF model: {pi_result}")
return True, injection_score > threshold
except Exception as err:
logger.error(f"Failed to call HF model: {err}")
return False, False
def detect_hf_protectai_v1(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=protectai_v1_classifier)
def detect_hf_protectai_v2(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=protectai_v2_classifier)
def detect_hf_deepset(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=deepset_classifier)
def detect_hf_fmops(prompt: str) -> (bool, bool):
return detect_hf(prompt, classifier=fmops_classifier, label="LABEL_1")
def detect_lakera(prompt: str) -> (bool, bool):
try:
response = requests.post(
"https://api.lakera.ai/v1/prompt_injection",
json={"input": prompt},
headers={"Authorization": f"Bearer {lakera_api_key}"},
)
response_json = response.json()
logger.info(f"Prompt injection result from Lakera: {response.json()}")
return True, response_json["results"][0]["flagged"]
except requests.RequestException as err:
logger.error(f"Failed to call Lakera API: {err}")
return False, False
def detect_automorphic(prompt: str) -> (bool, bool):
ag = aegis.Aegis(automorphic_api_key)
try:
ingress_attack_detected = ag.ingress(prompt, "")
logger.info(f"Prompt injection result from Automorphic: {ingress_attack_detected}")
return True, ingress_attack_detected["detected"]
except Exception as err:
logger.error(f"Failed to call Automorphic API: {err}")
return False, False # Assume it's not attack
def detect_rebuff(prompt: str) -> (bool, bool):
try:
rb = Rebuff(api_token=rebuff_api_key, api_url="https://www.rebuff.ai")
result = rb.detect_injection(prompt)
logger.info(f"Prompt injection result from Rebuff: {result}")
return True, result.injectionDetected
except Exception as err:
logger.error(f"Failed to call Rebuff API: {err}")
return False, False
def detect_azure(prompt: str) -> (bool, bool):
try:
response = requests.post(
f"{azure_content_safety_endpoint}contentsafety/text:detectJailbreak?api-version=2023-10-15-preview",
json={"text": prompt},
headers={"Ocp-Apim-Subscription-Key": azure_content_safety_key},
)
response_json = response.json()
logger.info(f"Prompt injection result from Azure: {response.json()}")
if "jailbreakAnalysis" not in response_json:
return False, False
return True, response_json["jailbreakAnalysis"]["detected"]
except requests.RequestException as err:
logger.error(f"Failed to call Azure API: {err}")
return False, False
def detect_aws_comprehend(prompt: str) -> (bool, bool):
response = aws_comprehend_client.classify_document(
EndpointArn="arn:aws:comprehend:us-east-1:aws:document-classifier-endpoint/prompt-safety",
Text=prompt,
)
response = {
"Classes": [
{"Name": "SAFE_PROMPT", "Score": 0.9010000228881836},
{"Name": "UNSAFE_PROMPT", "Score": 0.0989999994635582},
],
"ResponseMetadata": {
"RequestId": "e8900fe1-3346-45c0-bad3-007b2840865a",
"HTTPStatusCode": 200,
"HTTPHeaders": {
"x-amzn-requestid": "e8900fe1-3346-45c0-bad3-007b2840865a",
"content-type": "application/x-amz-json-1.1",
"content-length": "115",
"date": "Mon, 19 Feb 2024 08:34:43 GMT",
},
"RetryAttempts": 0,
},
}
logger.info(f"Prompt injection result from AWS Comprehend: {response}")
if response["ResponseMetadata"]["HTTPStatusCode"] != 200:
logger.error(f"Failed to call AWS Comprehend API: {response}")
return False, False
return True, response["Classes"][0] == "UNSAFE_PROMPT"
detection_providers = {
"ProtectAI v1 (HF model)": detect_hf_protectai_v1,
"ProtectAI v2 (HF model)": detect_hf_protectai_v2,
"Deepset (HF model)": detect_hf_deepset,
"FMOps (HF model)": detect_hf_fmops,
"Lakera Guard": detect_lakera,
"Automorphic Aegis": detect_automorphic,
# "Rebuff": detect_rebuff,
"Azure Content Safety": detect_azure,
#"AWS Comprehend": detect_aws_comprehend,
}
def is_detected(provider: str, prompt: str) -> (str, bool, bool, float):
if provider not in detection_providers:
logger.warning(f"Provider {provider} is not supported")
return False, 0.0
start_time = time.monotonic()
request_result, is_injection = detection_providers[provider](prompt)
end_time = time.monotonic()
return provider, request_result, is_injection, convert_elapsed_time(end_time - start_time)
def execute(prompt: str) -> List[Union[str, bool, float]]:
results = []
with mp.Pool(processes=num_processes) as pool:
for result in pool.starmap(
is_detected, [(provider, prompt) for provider in detection_providers.keys()]
):
results.append(result)
# Save image and result
fileobj = json.dumps(
{"prompt": prompt, "results": results}, indent=2, ensure_ascii=False
).encode("utf-8")
result_path = f"/prompts/train/{str(uuid.uuid4())}.json"
hf_api.upload_file(
path_or_fileobj=fileobj,
path_in_repo=result_path,
repo_id="ProtectAI/prompt-injection-benchmark",
repo_type="dataset",
)
logger.info(f"Stored prompt: {prompt}")
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--url", type=str, default="0.0.0.0")
args, left_argv = parser.parse_known_args()
example_files = glob.glob(os.path.join(os.path.dirname(__file__), "examples", "*.txt"))
examples = [open(file).read() for file in example_files]
gr.Interface(
fn=execute,
inputs=[
gr.Textbox(label="Prompt"),
],
outputs=[
gr.Dataframe(
headers=[
"Provider",
"Is processed successfully?",
"Is prompt injection?",
"Latency (seconds)",
],
datatype=["str", "bool", "bool", "number"],
label="Results",
),
],
title="Prompt Injection Solutions Benchmark",
description="This interface aims to benchmark the known prompt injection detection providers. "
"The results are <strong>stored in the private dataset</strong> for further analysis and improvements. This interface is for research purposes only."
"<br /><br />"
"HuggingFace (HF) models are hosted on Spaces while other providers are called as APIs.<br /><br />"
'<a href="https://join.slack.com/t/laiyerai/shared_invite/zt-28jv3ci39-sVxXrLs3rQdaN3mIl9IT~w">Join our Slack community to discuss LLM Security</a><br />'
'<a href="https://github.com/protectai/llm-guard">Secure your LLM interactions with LLM Guard</a>',
examples=[
[
example,
False,
]
for example in examples
],
cache_examples=True,
allow_flagging="never",
concurrency_limit=1,
).launch(server_name=args.url, server_port=args.port)