Spaces:
Build error
Build error
hengjie yang
commited on
Commit
·
a03d4c1
1
Parent(s):
4ecc033
Complete overhaul of audio processing and embedding extraction
Browse files- src/deploy/voice_clone.py +100 -47
src/deploy/voice_clone.py
CHANGED
|
@@ -41,6 +41,40 @@ class VoiceCloneSystem:
|
|
| 41 |
|
| 42 |
print("模型加载完成!")
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
def extract_speaker_embedding(
|
| 45 |
self,
|
| 46 |
audio_paths: List[Union[str, Path]]
|
|
@@ -57,33 +91,42 @@ class VoiceCloneSystem:
|
|
| 57 |
embeddings = []
|
| 58 |
|
| 59 |
for audio_path in audio_paths:
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
waveform =
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
# 计算平均特征
|
| 81 |
-
mean_embedding = torch.
|
|
|
|
|
|
|
| 82 |
if mean_embedding.dim() == 1:
|
| 83 |
-
mean_embedding = mean_embedding.unsqueeze(0)
|
| 84 |
|
| 85 |
-
#
|
| 86 |
print(f"Final embedding shape: {mean_embedding.shape}")
|
|
|
|
| 87 |
return mean_embedding
|
| 88 |
|
| 89 |
def generate_speech(
|
|
@@ -101,21 +144,26 @@ class VoiceCloneSystem:
|
|
| 101 |
Returns:
|
| 102 |
生成的语音波形
|
| 103 |
"""
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
def clone_voice(
|
| 121 |
self,
|
|
@@ -140,6 +188,7 @@ class VoiceCloneSystem:
|
|
| 140 |
speech = self.generate_speech(text, speaker_embedding)
|
| 141 |
|
| 142 |
return speech
|
|
|
|
| 143 |
except Exception as e:
|
| 144 |
print(f"Error in clone_voice: {str(e)}")
|
| 145 |
raise
|
|
@@ -158,13 +207,17 @@ class VoiceCloneSystem:
|
|
| 158 |
output_path: 输出文件路径
|
| 159 |
sample_rate: 采样率
|
| 160 |
"""
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
print("模型加载完成!")
|
| 43 |
|
| 44 |
+
def process_audio(self, waveform: torch.Tensor, sr: int) -> torch.Tensor:
|
| 45 |
+
"""
|
| 46 |
+
处理音频:重采样和转换为单声道
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
waveform: 输入音频波形
|
| 50 |
+
sr: 采样率
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
处理后的音频波形
|
| 54 |
+
"""
|
| 55 |
+
# 重采样到16kHz
|
| 56 |
+
if sr != 16000:
|
| 57 |
+
waveform = torchaudio.functional.resample(waveform, sr, 16000)
|
| 58 |
+
|
| 59 |
+
# 确保音频是单声道
|
| 60 |
+
if waveform.shape[0] > 1:
|
| 61 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 62 |
+
|
| 63 |
+
# 标准化音频长度(3秒)
|
| 64 |
+
target_length = 16000 * 3
|
| 65 |
+
current_length = waveform.shape[1]
|
| 66 |
+
|
| 67 |
+
if current_length > target_length:
|
| 68 |
+
# 如果太长,截取中间部分
|
| 69 |
+
start = (current_length - target_length) // 2
|
| 70 |
+
waveform = waveform[:, start:start + target_length]
|
| 71 |
+
elif current_length < target_length:
|
| 72 |
+
# 如果太短,用0填充
|
| 73 |
+
padding = torch.zeros(1, target_length - current_length)
|
| 74 |
+
waveform = torch.cat([waveform, padding], dim=1)
|
| 75 |
+
|
| 76 |
+
return waveform
|
| 77 |
+
|
| 78 |
def extract_speaker_embedding(
|
| 79 |
self,
|
| 80 |
audio_paths: List[Union[str, Path]]
|
|
|
|
| 91 |
embeddings = []
|
| 92 |
|
| 93 |
for audio_path in audio_paths:
|
| 94 |
+
try:
|
| 95 |
+
# 加载音频
|
| 96 |
+
waveform, sr = torchaudio.load(str(audio_path))
|
| 97 |
+
|
| 98 |
+
# 处理音频
|
| 99 |
+
waveform = self.process_audio(waveform, sr)
|
| 100 |
+
|
| 101 |
+
# 提取特征
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
# 确保输入维度正确 [batch, time]
|
| 104 |
+
if waveform.dim() == 2:
|
| 105 |
+
waveform = waveform.squeeze(0)
|
| 106 |
+
|
| 107 |
+
# 提取特征并处理维度
|
| 108 |
+
embedding = self.speaker_encoder.encode_batch(waveform.unsqueeze(0).to(self.device))
|
| 109 |
+
embedding = embedding.squeeze() # 移除所有维度为1的维度
|
| 110 |
+
|
| 111 |
+
# 打印中间结果
|
| 112 |
+
print(f"Raw embedding shape: {embedding.shape}")
|
| 113 |
+
|
| 114 |
+
embeddings.append(embedding)
|
| 115 |
+
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"Error processing audio {audio_path}: {str(e)}")
|
| 118 |
+
raise
|
| 119 |
|
| 120 |
# 计算平均特征
|
| 121 |
+
mean_embedding = torch.stack(embeddings).mean(dim=0)
|
| 122 |
+
|
| 123 |
+
# 确保最终维度正确 [1, 512]
|
| 124 |
if mean_embedding.dim() == 1:
|
| 125 |
+
mean_embedding = mean_embedding.unsqueeze(0)
|
| 126 |
|
| 127 |
+
# 打印最终维度
|
| 128 |
print(f"Final embedding shape: {mean_embedding.shape}")
|
| 129 |
+
|
| 130 |
return mean_embedding
|
| 131 |
|
| 132 |
def generate_speech(
|
|
|
|
| 144 |
Returns:
|
| 145 |
生成的语音波形
|
| 146 |
"""
|
| 147 |
+
try:
|
| 148 |
+
# 处理输入文本
|
| 149 |
+
inputs = self.processor(text=text, return_tensors="pt")
|
| 150 |
+
|
| 151 |
+
# 确保说话人特征维度正确
|
| 152 |
+
if speaker_embedding.dim() != 2 or speaker_embedding.size(1) != 512:
|
| 153 |
+
raise ValueError(f"Speaker embedding should have shape [1, 512], but got {speaker_embedding.shape}")
|
| 154 |
+
|
| 155 |
+
# 生成语音
|
| 156 |
+
speech = self.tts_model.generate_speech(
|
| 157 |
+
inputs["input_ids"].to(self.device),
|
| 158 |
+
speaker_embedding.to(self.device),
|
| 159 |
+
vocoder=self.vocoder
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
return speech
|
| 163 |
+
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print(f"Error in generate_speech: {str(e)}")
|
| 166 |
+
raise
|
| 167 |
|
| 168 |
def clone_voice(
|
| 169 |
self,
|
|
|
|
| 188 |
speech = self.generate_speech(text, speaker_embedding)
|
| 189 |
|
| 190 |
return speech
|
| 191 |
+
|
| 192 |
except Exception as e:
|
| 193 |
print(f"Error in clone_voice: {str(e)}")
|
| 194 |
raise
|
|
|
|
| 207 |
output_path: 输出文件路径
|
| 208 |
sample_rate: 采样率
|
| 209 |
"""
|
| 210 |
+
try:
|
| 211 |
+
# 确保输出目录存在
|
| 212 |
+
output_path = Path(output_path)
|
| 213 |
+
output_path.parent.mkdir(parents=True, exist_ok=True)
|
| 214 |
+
|
| 215 |
+
# 保存音频
|
| 216 |
+
torchaudio.save(
|
| 217 |
+
str(output_path),
|
| 218 |
+
waveform.unsqueeze(0).cpu(),
|
| 219 |
+
sample_rate
|
| 220 |
+
)
|
| 221 |
+
except Exception as e:
|
| 222 |
+
print(f"Error saving audio: {str(e)}")
|
| 223 |
+
raise
|