File size: 27,029 Bytes
0efc562
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
<div align="center">
  <img src="resources/mmpose-logo.png" width="450"/>
  <div>&nbsp;</div>
  <div align="center">
    <b>OpenMMLab website</b>
    <sup>
      <a href="https://openmmlab.com">
        <i>HOT</i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b>OpenMMLab platform</b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i>TRY IT OUT</i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![Documentation](https://readthedocs.org/projects/mmpose/badge/?version=latest)](https://mmpose.readthedocs.io/en/latest/?badge=latest)
[![actions](https://github.com/open-mmlab/mmpose/workflows/merge_stage_test/badge.svg)](https://github.com/open-mmlab/mmpose/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmpose/branch/latest/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmpose)
[![PyPI](https://img.shields.io/pypi/v/mmpose)](https://pypi.org/project/mmpose/)
[![LICENSE](https://img.shields.io/github/license/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/blob/main/LICENSE)
[![Average time to resolve an issue](https://isitmaintained.com/badge/resolution/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Percentage of issues still open](https://isitmaintained.com/badge/open/open-mmlab/mmpose.svg)](https://github.com/open-mmlab/mmpose/issues)
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_demo.svg)](https://openxlab.org.cn/apps?search=mmpose)

[📘Documentation](https://mmpose.readthedocs.io/en/latest/) |
[🛠️Installation](https://mmpose.readthedocs.io/en/latest/installation.html) |
[👀Model Zoo](https://mmpose.readthedocs.io/en/latest/model_zoo.html) |
[📜Papers](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html) |
[🆕Update News](https://mmpose.readthedocs.io/en/latest/notes/changelog.html) |
[🤔Reporting Issues](https://github.com/open-mmlab/mmpose/issues/new/choose) |
[🔥RTMPose](/projects/rtmpose/)

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.com/channels/1037617289144569886/1072798105428299817" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
</div>

## Introduction

English | [简体中文](README_CN.md)

MMPose is an open-source toolbox for pose estimation based on PyTorch.
It is a part of the [OpenMMLab project](https://github.com/open-mmlab).

The main branch works with **PyTorch 1.8+**.

https://user-images.githubusercontent.com/15977946/124654387-0fd3c500-ded1-11eb-84f6-24eeddbf4d91.mp4

<br/>

<details close>
<summary><b>Major Features</b></summary>

- **Support diverse tasks**

  We support a wide spectrum of mainstream pose analysis tasks in current research community, including 2d multi-person human pose estimation, 2d hand pose estimation, 2d face landmark detection, 133 keypoint whole-body human pose estimation, 3d human mesh recovery, fashion landmark detection and animal pose estimation.
  See [Demo](demo/docs/en) for more information.

- **Higher efficiency and higher accuracy**

  MMPose implements multiple state-of-the-art (SOTA) deep learning models, including both top-down & bottom-up approaches. We achieve faster training speed and higher accuracy than other popular codebases, such as [HRNet](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch).
  See [benchmark.md](docs/en/notes/benchmark.md) for more information.

- **Support for various datasets**

  The toolbox directly supports multiple popular and representative datasets, COCO, AIC, MPII, MPII-TRB, OCHuman etc.
  See [dataset_zoo](docs/en/dataset_zoo) for more information.

- **Well designed, tested and documented**

  We decompose MMPose into different components and one can easily construct a customized
  pose estimation framework by combining different modules.
  We provide detailed documentation and API reference, as well as unittests.

</details>

## What's New

- Release [RTMO](/projects/rtmo), a state-of-the-art real-time method for multi-person pose estimation.

  ![rtmo](https://github.com/open-mmlab/mmpose/assets/26127467/54d5555a-23e5-4308-89d1-f0c82a6734c2)

- Release [RTMW](/configs/wholebody_2d_keypoint/rtmpose/cocktail14/rtmw_cocktail14.md) models in various sizes ranging from RTMW-m to RTMW-x. The input sizes include `256x192` and `384x288`. This provides flexibility to select the right model for different speed and accuracy requirements.

- Support inference of [PoseAnything](/projects/pose_anything). Web demo is available [here](https://openxlab.org.cn/apps/detail/orhir/Pose-Anything).

- Support for two new datasets:

  - (CVPR 2023) [ExLPose](https://mmpose.readthedocs.io/en/latest/dataset_zoo/2d_body_keypoint.html#exlpose-dataset)
  - (ICCV 2023) [H3WB](/docs/en/dataset_zoo/3d_wholebody_keypoint.md)

- Welcome to use the [*MMPose project*](/projects/README.md). Here, you can discover the latest features and algorithms in MMPose and quickly share your ideas and code implementations with the community. Adding new features to MMPose has become smoother:

  - Provides a simple and fast way to add new algorithms, features, and applications to MMPose.
  - More flexible code structure and style, fewer restrictions, and a shorter code review process.
  - Utilize the powerful capabilities of MMPose in the form of independent projects without being constrained by the code framework.
  - Newly added projects include:
    - [RTMPose](/projects/rtmpose/)
    - [RTMO](/projects/rtmo/)
    - [PoseAnything](/projects/pose_anything/)
    - [YOLOX-Pose](/projects/yolox_pose/)
    - [MMPose4AIGC](/projects/mmpose4aigc/)
    - [Simple Keypoints](/projects/skps/)
    - [Just Dance](/projects/just_dance/)
    - [Uniformer](/projects/uniformer/)
  - Start your journey as an MMPose contributor with a simple [example project](/projects/example_project/), and let's build a better MMPose together!

<br/>

- January 4, 2024: MMPose [v1.3.0](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) has been officially released, with major updates including:

  - Support for new datasets: ExLPose, H3WB
  - Release of new RTMPose series models: RTMO, RTMW
  - Support for new algorithm PoseAnything
  - Enhanced Inferencer with optional progress bar and improved affinity for one-stage methods

  Please check the complete [release notes](https://github.com/open-mmlab/mmpose/releases/tag/v1.3.0) for more details on the updates brought by MMPose v1.3.0!

## 0.x / 1.x Migration

MMPose v1.0.0 is a major update, including many API and config file changes. Currently, a part of the algorithms have been migrated to v1.0.0, and the remaining algorithms will be completed in subsequent versions. We will show the migration progress in this [Roadmap](https://github.com/open-mmlab/mmpose/issues/2258).

If your algorithm has not been migrated, you can continue to use the [0.x branch](https://github.com/open-mmlab/mmpose/tree/0.x) and [old documentation](https://mmpose.readthedocs.io/en/0.x/).

## Installation

Please refer to [installation.md](https://mmpose.readthedocs.io/en/latest/installation.html) for more detailed installation and dataset preparation.

## Getting Started

We provided a series of tutorials about the basic usage of MMPose for new users:

1. For the basic usage of MMPose:

   - [A 20-minute Tour to MMPose](https://mmpose.readthedocs.io/en/latest/guide_to_framework.html)
   - [Demos](https://mmpose.readthedocs.io/en/latest/demos.html)
   - [Inference](https://mmpose.readthedocs.io/en/latest/user_guides/inference.html)
   - [Configs](https://mmpose.readthedocs.io/en/latest/user_guides/configs.html)
   - [Prepare Datasets](https://mmpose.readthedocs.io/en/latest/user_guides/prepare_datasets.html)
   - [Train and Test](https://mmpose.readthedocs.io/en/latest/user_guides/train_and_test.html)
   - [Deployment](https://mmpose.readthedocs.io/en/latest/user_guides/how_to_deploy.html)
   - [Model Analysis](https://mmpose.readthedocs.io/en/latest/user_guides/model_analysis.html)
   - [Dataset Annotation and Preprocessing](https://mmpose.readthedocs.io/en/latest/user_guides/dataset_tools.html)

2. For developers who wish to develop based on MMPose:

   - [Learn about Codecs](https://mmpose.readthedocs.io/en/latest/advanced_guides/codecs.html)
   - [Dataflow in MMPose](https://mmpose.readthedocs.io/en/latest/advanced_guides/dataflow.html)
   - [Implement New Models](https://mmpose.readthedocs.io/en/latest/advanced_guides/implement_new_models.html)
   - [Customize Datasets](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_datasets.html)
   - [Customize Data Transforms](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_transforms.html)
   - [Customize Evaluation](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_evaluation.html)
   - [Customize Optimizer](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_optimizer.html)
   - [Customize Logging](https://mmpose.readthedocs.io/en/latest/advanced_guides/customize_logging.html)
   - [How to Deploy](https://mmpose.readthedocs.io/en/latest/user_guides/how_to_deploy.html)
   - [Model Analysis](https://mmpose.readthedocs.io/en/latest/user_guides/model_analysis.html)
   - [Migration Guide](https://mmpose.readthedocs.io/en/latest/migration.html)

3. For researchers and developers who are willing to contribute to MMPose:

   - [Contribution Guide](https://mmpose.readthedocs.io/en/latest/contribution_guide.html)

4. For some common issues, we provide a FAQ list:

   - [FAQ](https://mmpose.readthedocs.io/en/latest/faq.html)

## Model Zoo

Results and models are available in the **README.md** of each method's config directory.
A summary can be found in the [Model Zoo](https://mmpose.readthedocs.io/en/latest/model_zoo.html) page.

<details open>
<summary><b>Supported algorithms:</b></summary>

- [x] [DeepPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#deeppose-cvpr-2014) (CVPR'2014)
- [x] [CPM](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#cpm-cvpr-2016) (CVPR'2016)
- [x] [Hourglass](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hourglass-eccv-2016) (ECCV'2016)
- [x] [SimpleBaseline3D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simplebaseline3d-iccv-2017) (ICCV'2017)
- [ ] [Associative Embedding](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#associative-embedding-nips-2017) (NeurIPS'2017)
- [x] [SimpleBaseline2D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simplebaseline2d-eccv-2018) (ECCV'2018)
- [x] [DSNT](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#dsnt-2018) (ArXiv'2021)
- [x] [HRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrnet-cvpr-2019) (CVPR'2019)
- [x] [IPR](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#ipr-eccv-2018) (ECCV'2018)
- [x] [VideoPose3D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#videopose3d-cvpr-2019) (CVPR'2019)
- [x] [HRNetv2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrnetv2-tpami-2019) (TPAMI'2019)
- [x] [MSPN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#mspn-arxiv-2019) (ArXiv'2019)
- [x] [SCNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#scnet-cvpr-2020) (CVPR'2020)
- [ ] [HigherHRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#higherhrnet-cvpr-2020) (CVPR'2020)
- [x] [RSN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#rsn-eccv-2020) (ECCV'2020)
- [x] [InterNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#internet-eccv-2020) (ECCV'2020)
- [ ] [VoxelPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#voxelpose-eccv-2020) (ECCV'2020)
- [x] [LiteHRNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#litehrnet-cvpr-2021) (CVPR'2021)
- [x] [ViPNAS](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#vipnas-cvpr-2021) (CVPR'2021)
- [x] [Debias-IPR](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#debias-ipr-iccv-2021) (ICCV'2021)
- [x] [SimCC](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/algorithms.html#simcc-eccv-2022) (ECCV'2022)

</details>

<details open>
<summary><b>Supported techniques:</b></summary>

- [x] [FPN](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#fpn-cvpr-2017) (CVPR'2017)
- [x] [FP16](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#fp16-arxiv-2017) (ArXiv'2017)
- [x] [Wingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#wingloss-cvpr-2018) (CVPR'2018)
- [x] [AdaptiveWingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#adaptivewingloss-iccv-2019) (ICCV'2019)
- [x] [DarkPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#darkpose-cvpr-2020) (CVPR'2020)
- [x] [UDP](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#udp-cvpr-2020) (CVPR'2020)
- [x] [Albumentations](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#albumentations-information-2020) (Information'2020)
- [x] [SoftWingloss](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#softwingloss-tip-2021) (TIP'2021)
- [x] [RLE](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/techniques.html#rle-iccv-2021) (ICCV'2021)

</details>

<details open>
<summary><b>Supported datasets:</b></summary>

- [x] [AFLW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#aflw-iccvw-2011) \[[homepage](https://www.tugraz.at/institute/icg/research/team-bischof/lrs/downloads/aflw/)\] (ICCVW'2011)
- [x] [sub-JHMDB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#jhmdb-iccv-2013) \[[homepage](http://jhmdb.is.tue.mpg.de/dataset)\] (ICCV'2013)
- [x] [COFW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cofw-iccv-2013) \[[homepage](http://www.vision.caltech.edu/xpburgos/ICCV13/)\] (ICCV'2013)
- [x] [MPII](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mpii-cvpr-2014) \[[homepage](http://human-pose.mpi-inf.mpg.de/)\] (CVPR'2014)
- [x] [Human3.6M](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#human3-6m-tpami-2014) \[[homepage](http://vision.imar.ro/human3.6m/description.php)\] (TPAMI'2014)
- [x] [COCO](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#coco-eccv-2014) \[[homepage](http://cocodataset.org/)\] (ECCV'2014)
- [x] [CMU Panoptic](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cmu-panoptic-iccv-2015) \[[homepage](http://domedb.perception.cs.cmu.edu/)\] (ICCV'2015)
- [x] [DeepFashion](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#deepfashion-cvpr-2016) \[[homepage](http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion/LandmarkDetection.html)\] (CVPR'2016)
- [x] [300W](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#300w-imavis-2016) \[[homepage](https://ibug.doc.ic.ac.uk/resources/300-W/)\] (IMAVIS'2016)
- [x] [RHD](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#rhd-iccv-2017) \[[homepage](https://lmb.informatik.uni-freiburg.de/resources/datasets/RenderedHandposeDataset.en.html)\] (ICCV'2017)
- [x] [CMU Panoptic HandDB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#cmu-panoptic-handdb-cvpr-2017) \[[homepage](http://domedb.perception.cs.cmu.edu/handdb.html)\] (CVPR'2017)
- [x] [AI Challenger](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ai-challenger-arxiv-2017) \[[homepage](https://github.com/AIChallenger/AI_Challenger_2017)\] (ArXiv'2017)
- [x] [MHP](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mhp-acm-mm-2018) \[[homepage](https://lv-mhp.github.io/dataset)\] (ACM MM'2018)
- [x] [WFLW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#wflw-cvpr-2018) \[[homepage](https://wywu.github.io/projects/LAB/WFLW.html)\] (CVPR'2018)
- [x] [PoseTrack18](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#posetrack18-cvpr-2018) \[[homepage](https://posetrack.net/users/download.php)\] (CVPR'2018)
- [x] [OCHuman](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ochuman-cvpr-2019) \[[homepage](https://github.com/liruilong940607/OCHumanApi)\] (CVPR'2019)
- [x] [CrowdPose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#crowdpose-cvpr-2019) \[[homepage](https://github.com/Jeff-sjtu/CrowdPose)\] (CVPR'2019)
- [x] [MPII-TRB](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#mpii-trb-iccv-2019) \[[homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body)\] (ICCV'2019)
- [x] [FreiHand](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#freihand-iccv-2019) \[[homepage](https://lmb.informatik.uni-freiburg.de/projects/freihand/)\] (ICCV'2019)
- [x] [Animal-Pose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#animal-pose-iccv-2019) \[[homepage](https://sites.google.com/view/animal-pose/)\] (ICCV'2019)
- [x] [OneHand10K](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#onehand10k-tcsvt-2019) \[[homepage](https://www.yangangwang.com/papers/WANG-MCC-2018-10.html)\] (TCSVT'2019)
- [x] [Vinegar Fly](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#vinegar-fly-nature-methods-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Nature Methods'2019)
- [x] [Desert Locust](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#desert-locust-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [Grévy’s Zebra](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#grevys-zebra-elife-2019) \[[homepage](https://github.com/jgraving/DeepPoseKit-Data)\] (Elife'2019)
- [x] [ATRW](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#atrw-acm-mm-2020) \[[homepage](https://cvwc2019.github.io/challenge.html)\] (ACM MM'2020)
- [x] [Halpe](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#halpe-cvpr-2020) \[[homepage](https://github.com/Fang-Haoshu/Halpe-FullBody/)\] (CVPR'2020)
- [x] [COCO-WholeBody](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#coco-wholebody-eccv-2020) \[[homepage](https://github.com/jin-s13/COCO-WholeBody/)\] (ECCV'2020)
- [x] [MacaquePose](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#macaquepose-biorxiv-2020) \[[homepage](http://www.pri.kyoto-u.ac.jp/datasets/macaquepose/index.html)\] (bioRxiv'2020)
- [x] [InterHand2.6M](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#interhand2-6m-eccv-2020) \[[homepage](https://mks0601.github.io/InterHand2.6M/)\] (ECCV'2020)
- [x] [AP-10K](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ap-10k-neurips-2021) \[[homepage](https://github.com/AlexTheBad/AP-10K)\] (NeurIPS'2021)
- [x] [Horse-10](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#horse-10-wacv-2021) \[[homepage](http://www.mackenziemathislab.org/horse10)\] (WACV'2021)
- [x] [Human-Art](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#human-art-cvpr-2023) \[[homepage](https://idea-research.github.io/HumanArt/)\] (CVPR'2023)
- [x] [LaPa](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#lapa-aaai-2020) \[[homepage](https://github.com/JDAI-CV/lapa-dataset)\] (AAAI'2020)
- [x] [UBody](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/datasets.html#ubody-cvpr-2023) \[[homepage](https://github.com/IDEA-Research/OSX)\] (CVPR'2023)

</details>

<details open>
<summary><b>Supported backbones:</b></summary>

- [x] [AlexNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#alexnet-neurips-2012) (NeurIPS'2012)
- [x] [VGG](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#vgg-iclr-2015) (ICLR'2015)
- [x] [ResNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnet-cvpr-2016) (CVPR'2016)
- [x] [ResNext](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnext-cvpr-2017) (CVPR'2017)
- [x] [SEResNet](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#seresnet-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV1](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#shufflenetv1-cvpr-2018) (CVPR'2018)
- [x] [ShufflenetV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#shufflenetv2-eccv-2018) (ECCV'2018)
- [x] [MobilenetV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#mobilenetv2-cvpr-2018) (CVPR'2018)
- [x] [ResNetV1D](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnetv1d-cvpr-2019) (CVPR'2019)
- [x] [ResNeSt](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#resnest-arxiv-2020) (ArXiv'2020)
- [x] [Swin](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#swin-cvpr-2021) (CVPR'2021)
- [x] [HRFormer](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#hrformer-nips-2021) (NIPS'2021)
- [x] [PVT](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#pvt-iccv-2021) (ICCV'2021)
- [x] [PVTV2](https://mmpose.readthedocs.io/en/latest/model_zoo_papers/backbones.html#pvtv2-cvmj-2022) (CVMJ'2022)

</details>

### Model Request

We will keep up with the latest progress of the community, and support more popular algorithms and frameworks. If you have any feature requests, please feel free to leave a comment in [MMPose Roadmap](https://github.com/open-mmlab/mmpose/issues/2258).

## Contributing

We appreciate all contributions to improve MMPose. Please refer to [CONTRIBUTING.md](https://mmpose.readthedocs.io/en/latest/contribution_guide.html) for the contributing guideline.

## Acknowledgement

MMPose is an open source project that is contributed by researchers and engineers from various colleges and companies.
We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new models.

## Citation

If you find this project useful in your research, please consider cite:

```bibtex
@misc{mmpose2020,
    title={OpenMMLab Pose Estimation Toolbox and Benchmark},
    author={MMPose Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmpose}},
    year={2020}
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Projects in OpenMMLab

- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab Model Deployment Framework.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
- [Playground](https://github.com/open-mmlab/playground): A central hub for gathering and showcasing amazing projects built upon OpenMMLab.