Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import logging | |
import mimetypes | |
import os | |
import time | |
from argparse import ArgumentParser | |
from functools import partial | |
import cv2 | |
import json_tricks as json | |
import mmcv | |
import mmengine | |
import numpy as np | |
from mmengine.logging import print_log | |
from mmpose.apis import (_track_by_iou, _track_by_oks, | |
convert_keypoint_definition, extract_pose_sequence, | |
inference_pose_lifter_model, inference_topdown, | |
init_model) | |
from mmpose.models.pose_estimators import PoseLifter | |
from mmpose.models.pose_estimators.topdown import TopdownPoseEstimator | |
from mmpose.registry import VISUALIZERS | |
from mmpose.structures import (PoseDataSample, merge_data_samples, | |
split_instances) | |
from mmpose.utils import adapt_mmdet_pipeline | |
try: | |
from mmdet.apis import inference_detector, init_detector | |
has_mmdet = True | |
except (ImportError, ModuleNotFoundError): | |
has_mmdet = False | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument('det_config', help='Config file for detection') | |
parser.add_argument('det_checkpoint', help='Checkpoint file for detection') | |
parser.add_argument( | |
'pose_estimator_config', | |
type=str, | |
default=None, | |
help='Config file for the 1st stage 2D pose estimator') | |
parser.add_argument( | |
'pose_estimator_checkpoint', | |
type=str, | |
default=None, | |
help='Checkpoint file for the 1st stage 2D pose estimator') | |
parser.add_argument( | |
'pose_lifter_config', | |
help='Config file for the 2nd stage pose lifter model') | |
parser.add_argument( | |
'pose_lifter_checkpoint', | |
help='Checkpoint file for the 2nd stage pose lifter model') | |
parser.add_argument('--input', type=str, default='', help='Video path') | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
default=False, | |
help='Whether to show visualizations') | |
parser.add_argument( | |
'--disable-rebase-keypoint', | |
action='store_true', | |
default=False, | |
help='Whether to disable rebasing the predicted 3D pose so its ' | |
'lowest keypoint has a height of 0 (landing on the ground). Rebase ' | |
'is useful for visualization when the model do not predict the ' | |
'global position of the 3D pose.') | |
parser.add_argument( | |
'--disable-norm-pose-2d', | |
action='store_true', | |
default=False, | |
help='Whether to scale the bbox (along with the 2D pose) to the ' | |
'average bbox scale of the dataset, and move the bbox (along with the ' | |
'2D pose) to the average bbox center of the dataset. This is useful ' | |
'when bbox is small, especially in multi-person scenarios.') | |
parser.add_argument( | |
'--num-instances', | |
type=int, | |
default=1, | |
help='The number of 3D poses to be visualized in every frame. If ' | |
'less than 0, it will be set to the number of pose results in the ' | |
'first frame.') | |
parser.add_argument( | |
'--output-root', | |
type=str, | |
default='', | |
help='Root of the output video file. ' | |
'Default not saving the visualization video.') | |
parser.add_argument( | |
'--save-predictions', | |
action='store_true', | |
default=False, | |
help='Whether to save predicted results') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--det-cat-id', | |
type=int, | |
default=0, | |
help='Category id for bounding box detection model') | |
parser.add_argument( | |
'--bbox-thr', | |
type=float, | |
default=0.3, | |
help='Bounding box score threshold') | |
parser.add_argument('--kpt-thr', type=float, default=0.3) | |
parser.add_argument( | |
'--use-oks-tracking', action='store_true', help='Using OKS tracking') | |
parser.add_argument( | |
'--tracking-thr', type=float, default=0.3, help='Tracking threshold') | |
parser.add_argument( | |
'--show-interval', type=int, default=0, help='Sleep seconds per frame') | |
parser.add_argument( | |
'--thickness', | |
type=int, | |
default=1, | |
help='Link thickness for visualization') | |
parser.add_argument( | |
'--radius', | |
type=int, | |
default=3, | |
help='Keypoint radius for visualization') | |
parser.add_argument( | |
'--online', | |
action='store_true', | |
default=False, | |
help='Inference mode. If set to True, can not use future frame' | |
'information when using multi frames for inference in the 2D pose' | |
'detection stage. Default: False.') | |
args = parser.parse_args() | |
return args | |
def process_one_image(args, detector, frame, frame_idx, pose_estimator, | |
pose_est_results_last, pose_est_results_list, next_id, | |
pose_lifter, visualize_frame, visualizer): | |
"""Visualize detected and predicted keypoints of one image. | |
Pipeline of this function: | |
frame | |
| | |
V | |
+-----------------+ | |
| detector | | |
+-----------------+ | |
| det_result | |
V | |
+-----------------+ | |
| pose_estimator | | |
+-----------------+ | |
| pose_est_results | |
V | |
+--------------------------------------------+ | |
| convert 2d kpts into pose-lifting format | | |
+--------------------------------------------+ | |
| pose_est_results_list | |
V | |
+-----------------------+ | |
| extract_pose_sequence | | |
+-----------------------+ | |
| pose_seq_2d | |
V | |
+-------------+ | |
| pose_lifter | | |
+-------------+ | |
| pose_lift_results | |
V | |
+-----------------+ | |
| post-processing | | |
+-----------------+ | |
| pred_3d_data_samples | |
V | |
+------------+ | |
| visualizer | | |
+------------+ | |
Args: | |
args (Argument): Custom command-line arguments. | |
detector (mmdet.BaseDetector): The mmdet detector. | |
frame (np.ndarray): The image frame read from input image or video. | |
frame_idx (int): The index of current frame. | |
pose_estimator (TopdownPoseEstimator): The pose estimator for 2d pose. | |
pose_est_results_last (list(PoseDataSample)): The results of pose | |
estimation from the last frame for tracking instances. | |
pose_est_results_list (list(list(PoseDataSample))): The list of all | |
pose estimation results converted by | |
``convert_keypoint_definition`` from previous frames. In | |
pose-lifting stage it is used to obtain the 2d estimation sequence. | |
next_id (int): The next track id to be used. | |
pose_lifter (PoseLifter): The pose-lifter for estimating 3d pose. | |
visualize_frame (np.ndarray): The image for drawing the results on. | |
visualizer (Visualizer): The visualizer for visualizing the 2d and 3d | |
pose estimation results. | |
Returns: | |
pose_est_results (list(PoseDataSample)): The pose estimation result of | |
the current frame. | |
pose_est_results_list (list(list(PoseDataSample))): The list of all | |
converted pose estimation results until the current frame. | |
pred_3d_instances (InstanceData): The result of pose-lifting. | |
Specifically, the predicted keypoints and scores are saved at | |
``pred_3d_instances.keypoints`` and | |
``pred_3d_instances.keypoint_scores``. | |
next_id (int): The next track id to be used. | |
""" | |
pose_lift_dataset = pose_lifter.cfg.test_dataloader.dataset | |
pose_lift_dataset_name = pose_lifter.dataset_meta['dataset_name'] | |
# First stage: conduct 2D pose detection in a Topdown manner | |
# use detector to obtain person bounding boxes | |
det_result = inference_detector(detector, frame) | |
pred_instance = det_result.pred_instances.cpu().numpy() | |
# filter out the person instances with category and bbox threshold | |
# e.g. 0 for person in COCO | |
bboxes = pred_instance.bboxes | |
bboxes = bboxes[np.logical_and(pred_instance.labels == args.det_cat_id, | |
pred_instance.scores > args.bbox_thr)] | |
# estimate pose results for current image | |
pose_est_results = inference_topdown(pose_estimator, frame, bboxes) | |
if args.use_oks_tracking: | |
_track = partial(_track_by_oks) | |
else: | |
_track = _track_by_iou | |
pose_det_dataset_name = pose_estimator.dataset_meta['dataset_name'] | |
pose_est_results_converted = [] | |
# convert 2d pose estimation results into the format for pose-lifting | |
# such as changing the keypoint order, flipping the keypoint, etc. | |
for i, data_sample in enumerate(pose_est_results): | |
pred_instances = data_sample.pred_instances.cpu().numpy() | |
keypoints = pred_instances.keypoints | |
# calculate area and bbox | |
if 'bboxes' in pred_instances: | |
areas = np.array([(bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) | |
for bbox in pred_instances.bboxes]) | |
pose_est_results[i].pred_instances.set_field(areas, 'areas') | |
else: | |
areas, bboxes = [], [] | |
for keypoint in keypoints: | |
xmin = np.min(keypoint[:, 0][keypoint[:, 0] > 0], initial=1e10) | |
xmax = np.max(keypoint[:, 0]) | |
ymin = np.min(keypoint[:, 1][keypoint[:, 1] > 0], initial=1e10) | |
ymax = np.max(keypoint[:, 1]) | |
areas.append((xmax - xmin) * (ymax - ymin)) | |
bboxes.append([xmin, ymin, xmax, ymax]) | |
pose_est_results[i].pred_instances.areas = np.array(areas) | |
pose_est_results[i].pred_instances.bboxes = np.array(bboxes) | |
# track id | |
track_id, pose_est_results_last, _ = _track(data_sample, | |
pose_est_results_last, | |
args.tracking_thr) | |
if track_id == -1: | |
if np.count_nonzero(keypoints[:, :, 1]) >= 3: | |
track_id = next_id | |
next_id += 1 | |
else: | |
# If the number of keypoints detected is small, | |
# delete that person instance. | |
keypoints[:, :, 1] = -10 | |
pose_est_results[i].pred_instances.set_field( | |
keypoints, 'keypoints') | |
pose_est_results[i].pred_instances.set_field( | |
pred_instances.bboxes * 0, 'bboxes') | |
pose_est_results[i].set_field(pred_instances, 'pred_instances') | |
track_id = -1 | |
pose_est_results[i].set_field(track_id, 'track_id') | |
# convert keypoints for pose-lifting | |
pose_est_result_converted = PoseDataSample() | |
pose_est_result_converted.set_field( | |
pose_est_results[i].pred_instances.clone(), 'pred_instances') | |
pose_est_result_converted.set_field( | |
pose_est_results[i].gt_instances.clone(), 'gt_instances') | |
keypoints = convert_keypoint_definition(keypoints, | |
pose_det_dataset_name, | |
pose_lift_dataset_name) | |
pose_est_result_converted.pred_instances.set_field( | |
keypoints, 'keypoints') | |
pose_est_result_converted.set_field(pose_est_results[i].track_id, | |
'track_id') | |
pose_est_results_converted.append(pose_est_result_converted) | |
pose_est_results_list.append(pose_est_results_converted.copy()) | |
# Second stage: Pose lifting | |
# extract and pad input pose2d sequence | |
pose_seq_2d = extract_pose_sequence( | |
pose_est_results_list, | |
frame_idx=frame_idx, | |
causal=pose_lift_dataset.get('causal', False), | |
seq_len=pose_lift_dataset.get('seq_len', 1), | |
step=pose_lift_dataset.get('seq_step', 1)) | |
# conduct 2D-to-3D pose lifting | |
norm_pose_2d = not args.disable_norm_pose_2d | |
pose_lift_results = inference_pose_lifter_model( | |
pose_lifter, | |
pose_seq_2d, | |
image_size=visualize_frame.shape[:2], | |
norm_pose_2d=norm_pose_2d) | |
# post-processing | |
for idx, pose_lift_result in enumerate(pose_lift_results): | |
pose_lift_result.track_id = pose_est_results[idx].get('track_id', 1e4) | |
pred_instances = pose_lift_result.pred_instances | |
keypoints = pred_instances.keypoints | |
keypoint_scores = pred_instances.keypoint_scores | |
if keypoint_scores.ndim == 3: | |
keypoint_scores = np.squeeze(keypoint_scores, axis=1) | |
pose_lift_results[ | |
idx].pred_instances.keypoint_scores = keypoint_scores | |
if keypoints.ndim == 4: | |
keypoints = np.squeeze(keypoints, axis=1) | |
keypoints = keypoints[..., [0, 2, 1]] | |
keypoints[..., 0] = -keypoints[..., 0] | |
keypoints[..., 2] = -keypoints[..., 2] | |
# rebase height (z-axis) | |
if not args.disable_rebase_keypoint: | |
keypoints[..., 2] -= np.min( | |
keypoints[..., 2], axis=-1, keepdims=True) | |
pose_lift_results[idx].pred_instances.keypoints = keypoints | |
pose_lift_results = sorted( | |
pose_lift_results, key=lambda x: x.get('track_id', 1e4)) | |
pred_3d_data_samples = merge_data_samples(pose_lift_results) | |
det_data_sample = merge_data_samples(pose_est_results) | |
pred_3d_instances = pred_3d_data_samples.get('pred_instances', None) | |
if args.num_instances < 0: | |
args.num_instances = len(pose_lift_results) | |
# Visualization | |
if visualizer is not None: | |
visualizer.add_datasample( | |
'result', | |
visualize_frame, | |
data_sample=pred_3d_data_samples, | |
det_data_sample=det_data_sample, | |
draw_gt=False, | |
dataset_2d=pose_det_dataset_name, | |
dataset_3d=pose_lift_dataset_name, | |
show=args.show, | |
draw_bbox=True, | |
kpt_thr=args.kpt_thr, | |
num_instances=args.num_instances, | |
wait_time=args.show_interval) | |
return pose_est_results, pose_est_results_list, pred_3d_instances, next_id | |
def main(): | |
assert has_mmdet, 'Please install mmdet to run the demo.' | |
args = parse_args() | |
assert args.show or (args.output_root != '') | |
assert args.input != '' | |
assert args.det_config is not None | |
assert args.det_checkpoint is not None | |
detector = init_detector( | |
args.det_config, args.det_checkpoint, device=args.device.lower()) | |
detector.cfg = adapt_mmdet_pipeline(detector.cfg) | |
pose_estimator = init_model( | |
args.pose_estimator_config, | |
args.pose_estimator_checkpoint, | |
device=args.device.lower()) | |
assert isinstance(pose_estimator, TopdownPoseEstimator), 'Only "TopDown"' \ | |
'model is supported for the 1st stage (2D pose detection)' | |
det_kpt_color = pose_estimator.dataset_meta.get('keypoint_colors', None) | |
det_dataset_skeleton = pose_estimator.dataset_meta.get( | |
'skeleton_links', None) | |
det_dataset_link_color = pose_estimator.dataset_meta.get( | |
'skeleton_link_colors', None) | |
pose_lifter = init_model( | |
args.pose_lifter_config, | |
args.pose_lifter_checkpoint, | |
device=args.device.lower()) | |
assert isinstance(pose_lifter, PoseLifter), \ | |
'Only "PoseLifter" model is supported for the 2nd stage ' \ | |
'(2D-to-3D lifting)' | |
pose_lifter.cfg.visualizer.radius = args.radius | |
pose_lifter.cfg.visualizer.line_width = args.thickness | |
pose_lifter.cfg.visualizer.det_kpt_color = det_kpt_color | |
pose_lifter.cfg.visualizer.det_dataset_skeleton = det_dataset_skeleton | |
pose_lifter.cfg.visualizer.det_dataset_link_color = det_dataset_link_color | |
visualizer = VISUALIZERS.build(pose_lifter.cfg.visualizer) | |
# the dataset_meta is loaded from the checkpoint | |
visualizer.set_dataset_meta(pose_lifter.dataset_meta) | |
if args.input == 'webcam': | |
input_type = 'webcam' | |
else: | |
input_type = mimetypes.guess_type(args.input)[0].split('/')[0] | |
if args.output_root == '': | |
save_output = False | |
else: | |
mmengine.mkdir_or_exist(args.output_root) | |
output_file = os.path.join(args.output_root, | |
os.path.basename(args.input)) | |
if args.input == 'webcam': | |
output_file += '.mp4' | |
save_output = True | |
if args.save_predictions: | |
assert args.output_root != '' | |
args.pred_save_path = f'{args.output_root}/results_' \ | |
f'{os.path.splitext(os.path.basename(args.input))[0]}.json' | |
if save_output: | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
pose_est_results_list = [] | |
pred_instances_list = [] | |
if input_type == 'image': | |
frame = mmcv.imread(args.input, channel_order='rgb') | |
_, _, pred_3d_instances, _ = process_one_image( | |
args=args, | |
detector=detector, | |
frame=frame, | |
frame_idx=0, | |
pose_estimator=pose_estimator, | |
pose_est_results_last=[], | |
pose_est_results_list=pose_est_results_list, | |
next_id=0, | |
pose_lifter=pose_lifter, | |
visualize_frame=frame, | |
visualizer=visualizer) | |
if args.save_predictions: | |
# save prediction results | |
pred_instances_list = split_instances(pred_3d_instances) | |
if save_output: | |
frame_vis = visualizer.get_image() | |
mmcv.imwrite(mmcv.rgb2bgr(frame_vis), output_file) | |
elif input_type in ['webcam', 'video']: | |
next_id = 0 | |
pose_est_results = [] | |
if args.input == 'webcam': | |
video = cv2.VideoCapture(0) | |
else: | |
video = cv2.VideoCapture(args.input) | |
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') | |
if int(major_ver) < 3: | |
fps = video.get(cv2.cv.CV_CAP_PROP_FPS) | |
else: | |
fps = video.get(cv2.CAP_PROP_FPS) | |
video_writer = None | |
frame_idx = 0 | |
while video.isOpened(): | |
success, frame = video.read() | |
frame_idx += 1 | |
if not success: | |
break | |
pose_est_results_last = pose_est_results | |
# First stage: 2D pose detection | |
# make person results for current image | |
(pose_est_results, pose_est_results_list, pred_3d_instances, | |
next_id) = process_one_image( | |
args=args, | |
detector=detector, | |
frame=frame, | |
frame_idx=frame_idx, | |
pose_estimator=pose_estimator, | |
pose_est_results_last=pose_est_results_last, | |
pose_est_results_list=pose_est_results_list, | |
next_id=next_id, | |
pose_lifter=pose_lifter, | |
visualize_frame=mmcv.bgr2rgb(frame), | |
visualizer=visualizer) | |
if args.save_predictions: | |
# save prediction results | |
pred_instances_list.append( | |
dict( | |
frame_id=frame_idx, | |
instances=split_instances(pred_3d_instances))) | |
if save_output: | |
frame_vis = visualizer.get_image() | |
if video_writer is None: | |
# the size of the image with visualization may vary | |
# depending on the presence of heatmaps | |
video_writer = cv2.VideoWriter(output_file, fourcc, fps, | |
(frame_vis.shape[1], | |
frame_vis.shape[0])) | |
video_writer.write(mmcv.rgb2bgr(frame_vis)) | |
if args.show: | |
# press ESC to exit | |
if cv2.waitKey(5) & 0xFF == 27: | |
break | |
time.sleep(args.show_interval) | |
video.release() | |
if video_writer: | |
video_writer.release() | |
else: | |
args.save_predictions = False | |
raise ValueError( | |
f'file {os.path.basename(args.input)} has invalid format.') | |
if args.save_predictions: | |
with open(args.pred_save_path, 'w') as f: | |
json.dump( | |
dict( | |
meta_info=pose_lifter.dataset_meta, | |
instance_info=pred_instances_list), | |
f, | |
indent='\t') | |
print(f'predictions have been saved at {args.pred_save_path}') | |
if save_output: | |
input_type = input_type.replace('webcam', 'video') | |
print_log( | |
f'the output {input_type} has been saved at {output_file}', | |
logger='current', | |
level=logging.INFO) | |
if __name__ == '__main__': | |
main() | |