Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import logging | |
from argparse import ArgumentParser | |
from mmcv.image import imread | |
from mmengine.logging import print_log | |
from mmpose.apis import inference_topdown, init_model | |
from mmpose.registry import VISUALIZERS | |
from mmpose.structures import merge_data_samples | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument('img', help='Image file') | |
parser.add_argument('config', help='Config file') | |
parser.add_argument('checkpoint', help='Checkpoint file') | |
parser.add_argument('--out-file', default=None, help='Path to output file') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--draw-heatmap', | |
action='store_true', | |
help='Visualize the predicted heatmap') | |
parser.add_argument( | |
'--show-kpt-idx', | |
action='store_true', | |
default=False, | |
help='Whether to show the index of keypoints') | |
parser.add_argument( | |
'--skeleton-style', | |
default='mmpose', | |
type=str, | |
choices=['mmpose', 'openpose'], | |
help='Skeleton style selection') | |
parser.add_argument( | |
'--kpt-thr', | |
type=float, | |
default=0.3, | |
help='Visualizing keypoint thresholds') | |
parser.add_argument( | |
'--radius', | |
type=int, | |
default=3, | |
help='Keypoint radius for visualization') | |
parser.add_argument( | |
'--thickness', | |
type=int, | |
default=1, | |
help='Link thickness for visualization') | |
parser.add_argument( | |
'--alpha', type=float, default=0.8, help='The transparency of bboxes') | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
default=False, | |
help='whether to show img') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
# build the model from a config file and a checkpoint file | |
if args.draw_heatmap: | |
cfg_options = dict(model=dict(test_cfg=dict(output_heatmaps=True))) | |
else: | |
cfg_options = None | |
model = init_model( | |
args.config, | |
args.checkpoint, | |
device=args.device, | |
cfg_options=cfg_options) | |
# init visualizer | |
model.cfg.visualizer.radius = args.radius | |
model.cfg.visualizer.alpha = args.alpha | |
model.cfg.visualizer.line_width = args.thickness | |
visualizer = VISUALIZERS.build(model.cfg.visualizer) | |
visualizer.set_dataset_meta( | |
model.dataset_meta, skeleton_style=args.skeleton_style) | |
# inference a single image | |
batch_results = inference_topdown(model, args.img) | |
results = merge_data_samples(batch_results) | |
# show the results | |
img = imread(args.img, channel_order='rgb') | |
visualizer.add_datasample( | |
'result', | |
img, | |
data_sample=results, | |
draw_gt=False, | |
draw_bbox=True, | |
kpt_thr=args.kpt_thr, | |
draw_heatmap=args.draw_heatmap, | |
show_kpt_idx=args.show_kpt_idx, | |
skeleton_style=args.skeleton_style, | |
show=args.show, | |
out_file=args.out_file) | |
if args.out_file is not None: | |
print_log( | |
f'the output image has been saved at {args.out_file}', | |
logger='current', | |
level=logging.INFO) | |
if __name__ == '__main__': | |
main() | |