Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import os.path as osp | |
from mmengine.config import Config, DictAction | |
from mmengine.runner import Runner | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train a pose model') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument('--work-dir', help='the dir to save logs and models') | |
parser.add_argument( | |
'--resume', | |
nargs='?', | |
type=str, | |
const='auto', | |
help='If specify checkpint path, resume from it, while if not ' | |
'specify, try to auto resume from the latest checkpoint ' | |
'in the work directory.') | |
parser.add_argument( | |
'--amp', | |
action='store_true', | |
default=False, | |
help='enable automatic-mixed-precision training') | |
parser.add_argument( | |
'--no-validate', | |
action='store_true', | |
help='whether not to evaluate the checkpoint during training') | |
parser.add_argument( | |
'--auto-scale-lr', | |
action='store_true', | |
help='whether to auto scale the learning rate according to the ' | |
'actual batch size and the original batch size.') | |
parser.add_argument( | |
'--show-dir', | |
help='directory where the visualization images will be saved.') | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
help='whether to display the prediction results in a window.') | |
parser.add_argument( | |
'--interval', | |
type=int, | |
default=1, | |
help='visualize per interval samples.') | |
parser.add_argument( | |
'--wait-time', | |
type=float, | |
default=1, | |
help='display time of every window. (second)') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. If the value to ' | |
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' | |
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' | |
'Note that the quotation marks are necessary and that no white space ' | |
'is allowed.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch` | |
# will pass the `--local-rank` parameter to `tools/train.py` instead | |
# of `--local_rank`. | |
parser.add_argument('--local_rank', '--local-rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def merge_args(cfg, args): | |
"""Merge CLI arguments to config.""" | |
if args.no_validate: | |
cfg.val_cfg = None | |
cfg.val_dataloader = None | |
cfg.val_evaluator = None | |
cfg.launcher = args.launcher | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
# enable automatic-mixed-precision training | |
if args.amp is True: | |
from mmengine.optim import AmpOptimWrapper, OptimWrapper | |
optim_wrapper = cfg.optim_wrapper.get('type', OptimWrapper) | |
assert optim_wrapper in (OptimWrapper, AmpOptimWrapper, | |
'OptimWrapper', 'AmpOptimWrapper'), \ | |
'`--amp` is not supported custom optimizer wrapper type ' \ | |
f'`{optim_wrapper}.' | |
cfg.optim_wrapper.type = 'AmpOptimWrapper' | |
cfg.optim_wrapper.setdefault('loss_scale', 'dynamic') | |
# resume training | |
if args.resume == 'auto': | |
cfg.resume = True | |
cfg.load_from = None | |
elif args.resume is not None: | |
cfg.resume = True | |
cfg.load_from = args.resume | |
# enable auto scale learning rate | |
if args.auto_scale_lr: | |
cfg.auto_scale_lr.enable = True | |
# visualization | |
if args.show or (args.show_dir is not None): | |
assert 'visualization' in cfg.default_hooks, \ | |
'PoseVisualizationHook is not set in the ' \ | |
'`default_hooks` field of config. Please set ' \ | |
'`visualization=dict(type="PoseVisualizationHook")`' | |
cfg.default_hooks.visualization.enable = True | |
cfg.default_hooks.visualization.show = args.show | |
if args.show: | |
cfg.default_hooks.visualization.wait_time = args.wait_time | |
cfg.default_hooks.visualization.out_dir = args.show_dir | |
cfg.default_hooks.visualization.interval = args.interval | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
return cfg | |
def main(): | |
args = parse_args() | |
# load config | |
cfg = Config.fromfile(args.config) | |
# merge CLI arguments to config | |
cfg = merge_args(cfg, args) | |
# set preprocess configs to model | |
if 'preprocess_cfg' in cfg: | |
cfg.model.setdefault('data_preprocessor', | |
cfg.get('preprocess_cfg', {})) | |
# build the runner from config | |
runner = Runner.from_cfg(cfg) | |
# start training | |
runner.train() | |
if __name__ == '__main__': | |
main() | |