Spaces:
Sleeping
Sleeping
| import cv2 | |
| from fastapi import FastAPI, Request | |
| from fastapi.responses import StreamingResponse, HTMLResponse | |
| from fastapi.templating import Jinja2Templates | |
| from typing import Generator | |
| from ultralytics import YOLO | |
| import numpy as np | |
| app = FastAPI() | |
| # Load the YOLOv8 model | |
| model = YOLO("yolov8l.pt") | |
| # Open the video file | |
| video_path = "demo.mp4" | |
| cap = cv2.VideoCapture(video_path) | |
| bird_count = 0 | |
| tracker_initialized = False | |
| # Initialize trackers based on OpenCV version | |
| try: | |
| if hasattr(cv2, 'legacy'): | |
| trackers = cv2.legacy.MultiTracker_create() | |
| else: | |
| trackers = cv2.MultiTracker_create() | |
| except AttributeError: | |
| trackers = None | |
| tracker_initialized = False | |
| def process_video() -> Generator[bytes, None, None]: | |
| global bird_count, tracker_initialized, trackers | |
| while cap.isOpened(): | |
| success, frame = cap.read() | |
| if not success: | |
| break | |
| frame_height, frame_width = frame.shape[:2] | |
| if not tracker_initialized: | |
| results = model(frame) | |
| detections = results[0].boxes.data.cpu().numpy() | |
| bird_results = [detection for detection in detections if int(detection[5]) == 14] | |
| try: | |
| if hasattr(cv2, 'legacy'): | |
| trackers = cv2.legacy.MultiTracker_create() | |
| else: | |
| trackers = cv2.MultiTracker_create() | |
| for res in bird_results: | |
| x1, y1, x2, y2, confidence, class_id = res | |
| x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
| if 0 <= x1 < frame_width and 0 <= y1 < frame_height and x2 <= frame_width and y2 <= frame_height: | |
| bbox = (x1, y1, x2 - x1, y2 - y1) | |
| tracker = cv2.legacy.TrackerCSRT_create() if hasattr(cv2, 'legacy') else cv2.TrackerCSRT_create() | |
| trackers.add(tracker, frame, bbox) | |
| bird_count = len(bird_results) | |
| tracker_initialized = True | |
| except AttributeError: | |
| trackers = None | |
| tracker_initialized = False | |
| else: | |
| success, boxes = trackers.update(frame) | |
| if success: | |
| bird_count = len(boxes) | |
| for box in boxes: | |
| x, y, w, h = [int(v) for v in box] | |
| cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) | |
| cv2.putText(frame, 'bird', (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) | |
| else: | |
| tracker_initialized = False | |
| ret, buffer = cv2.imencode('.jpg', frame) | |
| frame = buffer.tobytes() | |
| yield (b'--frame\r\n' | |
| b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') | |
| cap.release() | |
| templates = Jinja2Templates(directory="templates") | |
| async def index(request: Request): | |
| return templates.TemplateResponse("index.html", {"request": request, "bird_count": bird_count}) | |
| async def video_feed(): | |
| return StreamingResponse(process_video(), media_type='multipart/x-mixed-replace; boundary=frame') | |
| if __name__ == "__main__": | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |