GENAIreport / app.py
Pratik333's picture
Update app.py
8af0482 verified
raw
history blame
36.1 kB
import gradio as gr
import pandas as pd
import numpy as np
import io, base64, datetime, re
from collections import Counter
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
def get_first_row_totals(df, group_column):
"""Get the GenAI efficiency hours from the first row of each group"""
first_row_totals = {}
for group_value in df[group_column].unique():
group_rows = df[df[group_column] == group_value]
if not group_rows.empty:
first_row_totals[group_value] = group_rows.iloc[0]['GenAI Efficiency (Log time in hours)']
return first_row_totals
def create_unique_work_items(df):
"""Create unique work identifiers to avoid double counting"""
analysis_df = df.copy()
if 'Key' in analysis_df.columns and 'Project' in analysis_df.columns:
analysis_df['UniqueWorkID'] = analysis_df.apply(lambda row: f"{row['Project']}_{row['Key']}", axis=1)
elif all(col in analysis_df.columns for col in ['Date', 'Worklog', 'User']):
analysis_df['UniqueWorkID'] = analysis_df.apply(lambda row: f"{row['Project']}_{row['Date']}_{row['Worklog']}_{row['User']}", axis=1)
return analysis_df
def calculate_champion_score(descriptions, project_data=None):
"""Calculate champion score based on Tools (20%), Use-case (30%), Prompt (30%), Outcome (20%)"""
if not descriptions or not any(pd.notnull(desc) for desc in descriptions):
return 0
# Filter and join descriptions
valid_descriptions = [desc for desc in descriptions if pd.notnull(desc) and str(desc).strip()]
if not valid_descriptions:
return 0
combined_desc = "\n".join(str(desc) for desc in valid_descriptions)
combined_desc_lower = combined_desc.lower()
# Tools score (20%)
tools_score = 0
ai_tools = ['gpt', 'chatgpt', 'claude', 'gemini', 'copilot', 'dall-e', 'midjourney', 'stable diffusion',
'hugging face', 'llama', 'mistral', 'bard', 'anthropic']
tools_mentioned = sum(1 for tool in ai_tools if re.search(r'\b' + re.escape(tool) + r'\b', combined_desc_lower))
if tools_mentioned == 1:
tools_score = 10
elif tools_mentioned >= 2:
tools_score = 15
if re.search(r'\b(gpt-4|gpt-3.5|claude-2|claude-instant|gemini pro)\b', combined_desc_lower):
tools_score += 5
tools_score = min(tools_score, 20)
# Use-case score (30%)
use_case_score = 0
use_case_keywords = {
'code generation': ['code', 'coding', 'script', 'programming', 'develop'],
'content creation': ['content', 'write', 'writing', 'draft', 'article'],
'data analysis': ['data', 'analysis', 'analyze', 'metrics', 'statistics'],
'problem solving': ['problem', 'solution', 'solve', 'issue', 'challenge'],
'summarization': ['summary', 'summarize', 'summarization', 'extract'],
'research': ['research', 'study', 'investigate', 'literature', 'information'],
'automation': ['automate', 'automation', 'workflow', 'process']
}
use_cases_found = sum(1 for _, keywords in use_case_keywords.items()
if any(re.search(r'\b' + re.escape(keyword) + r'\b', combined_desc_lower) for keyword in keywords))
use_case_score += min(use_cases_found * 5, 15)
if re.search(r'\bfor\s+(a|an|the)\s+\w+', combined_desc_lower) or re.search(r'\bto\s+\w+\s+the\s+\w+', combined_desc_lower):
use_case_score += 5
domain_terms = ['frontend', 'backend', 'api', 'database', 'ui', 'ux', 'algorithm', 'component', 'feature']
if any(re.search(r'\b' + re.escape(term) + r'\b', combined_desc_lower) for term in domain_terms):
use_case_score += 5
if re.search(r'\bproject\b|\btask\b|\bticket\b|\bissue\b|\bstory\b', combined_desc_lower):
use_case_score += 5
use_case_score = min(use_case_score, 30)
# Prompt quality score (30%)
prompt_score = 0
if len(combined_desc) > 500:
prompt_score += 10
elif len(combined_desc) > 200:
prompt_score += 5
if re.search(r'".*?"|\bprompt\b|\'.*?\'|\bassist\b|\bcreate\b|\bgenerate\b', combined_desc_lower):
prompt_score += 10
prompt_techniques = ['step by step', 'chain of thought', 'few-shot', 'zero-shot', 'example']
techniques_found = sum(1 for technique in prompt_techniques
if re.search(r'\b' + re.escape(technique) + r'\b', combined_desc_lower))
prompt_score += min(techniques_found * 2, 10)
prompt_score = min(prompt_score, 30)
# Outcome/iteration score (20%)
outcome_score = 0
outcome_keywords = ['result', 'output', 'generated', 'created', 'produced', 'improved']
outcomes_found = sum(1 for keyword in outcome_keywords
if re.search(r'\b' + re.escape(keyword) + r'\b', combined_desc_lower))
outcome_score += min(outcomes_found * 2, 10)
iteration_keywords = ['iteration', 'refine', 'revise', 'update', 'modify', 'enhance', 'feedback']
iterations_found = sum(1 for keyword in iteration_keywords
if re.search(r'\b' + re.escape(keyword) + r'\b', combined_desc_lower))
outcome_score += min(iterations_found * 2, 5)
if re.search(r'\d+%|\d+\s*hours|\d+\s*minutes|reduced by|increased by', combined_desc_lower):
outcome_score += 5
outcome_score = min(outcome_score, 20)
return tools_score + use_case_score + prompt_score + outcome_score
def process_genai_data(df):
"""Process GenAI data at the user level, ensuring no duplication of hours"""
# Create unique users DataFrame
unique_users = df['User'].drop_duplicates().reset_index(drop=True)
result_df = pd.DataFrame(unique_users, columns=['User'])
# Get descriptions for each user
result_df['GenAI_Descriptions'] = result_df['User'].apply(
lambda user: "\n".join(["- " + str(desc) for desc in df[df['User'] == user]['GenAI use case description'].dropna().unique()])
if len(df[df['User'] == user]['GenAI use case description'].dropna().unique()) > 0 else ""
)
# Calculate metrics using unique combinations
def get_unique_metric_sum(user, metric_col):
user_data = df[df['User'] == user].copy()
if all(col in user_data.columns for col in ['Project', 'Key']):
user_data['UniqueID'] = user_data.apply(lambda row: f"{row['Project']}_{row['Key']}", axis=1)
return user_data.drop_duplicates('UniqueID')[metric_col].sum()
elif all(col in user_data.columns for col in ['Date', 'Project', 'Worklog']):
user_data['UniqueID'] = user_data.apply(lambda row: f"{row['Project']}_{row['Date']}_{row['Worklog']}", axis=1)
return user_data.drop_duplicates('UniqueID')[metric_col].sum()
return user_data[metric_col].sum()
result_df['GenAI_Efficiency'] = result_df['User'].apply(lambda user: get_unique_metric_sum(user, 'GenAI Efficiency (Log time in hours)'))
if 'Logged' in df.columns:
result_df['Total_Logged_Hours'] = result_df['User'].apply(lambda user: get_unique_metric_sum(user, 'Logged'))
if 'Required' in df.columns:
result_df['Total_Required_Hours'] = result_df['User'].apply(lambda user: get_unique_metric_sum(user, 'Required'))
# Calculate utilization percentage
if 'Total_Logged_Hours' in result_df.columns and 'Total_Required_Hours' in result_df.columns:
result_df['Utilization_Percentage'] = (result_df['Total_Logged_Hours'] / result_df['Total_Required_Hours'] * 100).round(2)
# Get date range for each user
if 'Date' in df.columns:
result_df['Date_Range'] = result_df['User'].apply(
lambda user: f"{min(dates)} to {max(dates)}" if
len(dates := df[df['User'] == user]['Date'].dropna()) > 0 else "N/A"
)
# Add champion score for each user
result_df['Description_Quality_Score'] = result_df['GenAI_Descriptions'].apply(
lambda desc: calculate_champion_score([desc]) if isinstance(desc, str) and desc.strip() else 0
)
# Get project and category data if available
if 'Project' in df.columns:
result_df['Projects'] = result_df['User'].apply(
lambda user: list(df[df['User'] == user]['Project'].dropna().unique())
)
if 'Project Category' in df.columns:
result_df['Project_Categories'] = result_df['User'].apply(
lambda user: list(df[df['User'] == user]['Project Category'].dropna().unique())
)
return result_df
def analyze_projects_by_genai_hours(df, exclude_qed42_global=False):
"""Analyzes projects by GenAI hours with quality metrics"""
if 'Project' not in df.columns:
return None
# Get first row totals for each project
project_totals = get_first_row_totals(df, 'Project')
# Calculate project data using unique work items
analysis_df = create_unique_work_items(df)
# Filter out QED42 Global projects if requested
if exclude_qed42_global:
analysis_df = analysis_df[~analysis_df['Project'].str.contains('QED42 Global', case=False, na=False)]
project_totals = {k: v for k, v in project_totals.items() if 'qed42 global' not in k.lower()}
projects_data = []
for project in analysis_df['Project'].unique():
if project in project_totals:
total_hours = project_totals[project]
user_count = len(analysis_df[analysis_df['Project'] == project]['User'].unique())
# Get project category if available
project_category = 'Unknown'
if 'Project Category' in analysis_df.columns:
project_category_series = analysis_df[analysis_df['Project'] == project]['Project Category'].dropna()
if not project_category_series.empty:
project_category = project_category_series.iloc[0]
# Get best description for this project
project_descriptions = analysis_df[analysis_df['Project'] == project]['GenAI use case description'].dropna().tolist()
best_description = max(project_descriptions, key=lambda x: len(str(x))) if project_descriptions else ""
champion_score = calculate_champion_score(project_descriptions)
projects_data.append({
'Project': project,
'Total_GenAI_Hours': total_hours,
'User_Count': user_count,
'Project Category': project_category,
'Best_Description': best_description,
'Champion_Score': champion_score
})
# Create DataFrame from projects data
project_hours = pd.DataFrame(projects_data) if projects_data else pd.DataFrame()
# Add combined scores
if not project_hours.empty:
max_hours = project_hours['Total_GenAI_Hours'].max() or 1
max_quality = project_hours['Champion_Score'].max() or 1
project_hours['Hours_Score'] = (project_hours['Total_GenAI_Hours'] / max_hours) * 100
project_hours['Quality_Score_Normalized'] = (project_hours['Champion_Score'] / max_quality) * 100
project_hours['Combined_Score'] = (project_hours['Hours_Score'] * 0.6) + (project_hours['Quality_Score_Normalized'] * 0.4)
project_hours = project_hours.sort_values('Combined_Score', ascending=False)
return project_hours
def extract_ai_tools_from_descriptions(df):
"""Extracts AI tools mentioned in descriptions"""
ai_tools = [
'chatgpt', 'gpt-4', 'gpt-3', 'gpt', 'openai', 'claude', 'anthropic',
'gemini', 'bard', 'google ai', 'copilot', 'github copilot', 'microsoft copilot',
'dall-e', 'midjourney', 'stable diffusion', 'hugging face', 'transformers',
'bert', 'llama', 'mistral', 'tensorflow', 'pytorch', 'ml',
'jupyter', 'colab', 'langchain', 'llm', 'rag'
]
tool_mapping = {
'gpt': 'ChatGPT/GPT', 'gpt-3': 'ChatGPT/GPT', 'gpt-4': 'ChatGPT/GPT', 'chatgpt': 'ChatGPT/GPT',
'openai': 'OpenAI', 'claude': 'Claude', 'anthropic': 'Claude',
'gemini': 'Google AI', 'bard': 'Google AI', 'google ai': 'Google AI',
'copilot': 'GitHub Copilot', 'github copilot': 'GitHub Copilot'
}
all_descriptions = df['GenAI use case description'].dropna()
if all_descriptions.empty:
return Counter()
all_descriptions_text = " ".join(all_descriptions.astype(str)).lower()
tool_counts = Counter()
for tool in ai_tools:
count = len(re.findall(r'\b' + re.escape(tool) + r'\b', all_descriptions_text))
if count > 0:
normalized_tool = tool_mapping.get(tool, tool)
tool_counts[normalized_tool] += count
return tool_counts
def extract_use_cases_from_descriptions(df):
"""Analyzes use cases in GenAI descriptions"""
use_case_keywords = {
'Code Generation': ['code', 'coding', 'programming', 'script', 'develop', 'algorithm'],
'Content Creation': ['content', 'write', 'writing', 'draft', 'article', 'blog'],
'Data Analysis': ['data', 'analysis', 'analyze', 'analytics', 'statistics', 'insights'],
'Documentation': ['document', 'documentation', 'manual', 'guide', 'readme'],
'Research': ['research', 'study', 'investigate', 'explore', 'literature'],
'Summarization': ['summary', 'summarize', 'summarization', 'extract'],
'Translation': ['translate', 'translation', 'language', 'localize']
}
descriptions = df['GenAI use case description'].dropna()
if descriptions.empty:
return Counter()
descriptions_list = descriptions.astype(str).tolist()
use_case_counts = Counter()
for description in descriptions_list:
description_lower = description.lower()
for use_case, keywords in use_case_keywords.items():
if any(re.search(r'\b' + re.escape(keyword) + r'\b', description_lower) for keyword in keywords):
use_case_counts[use_case] += 1
return use_case_counts
def create_download_excel(df):
"""Create Excel file for download"""
output = io.BytesIO()
with pd.ExcelWriter(output, engine='openpyxl') as writer:
df.to_excel(writer, index=False, sheet_name='Processed Data')
# Add summary sheet
if not df.empty:
summary = pd.DataFrame({
'Metric': ['Total Users', 'Average GenAI Efficiency (hours)', 'Average Utilization (%)',
'Top GenAI User', 'Top Quality Score'],
'Value': [
len(df),
round(df['GenAI_Efficiency'].mean(), 2) if 'GenAI_Efficiency' in df.columns else 'N/A',
round(df['Utilization_Percentage'].mean(), 2) if 'Utilization_Percentage' in df.columns else 'N/A',
df.loc[df['GenAI_Efficiency'].idxmax(), 'User'] if 'GenAI_Efficiency' in df.columns and not df['GenAI_Efficiency'].isna().all() else 'N/A',
df.loc[df['Description_Quality_Score'].idxmax(), 'User'] if 'Description_Quality_Score' in df.columns and not df['Description_Quality_Score'].isna().all() else 'N/A'
]
})
summary.to_excel(writer, index=False, sheet_name='Summary')
return output.getvalue()
def create_visualizations(result_df, project_analysis, ai_tool_counts, use_case_counts):
"""Create visualization plots"""
plots = []
# 1. GenAI Efficiency by User
if 'GenAI_Efficiency' in result_df.columns and not result_df.empty:
sorted_df = result_df.sort_values('GenAI_Efficiency', ascending=False).head(10)
fig1 = px.bar(
sorted_df,
x='User',
y='GenAI_Efficiency',
title='Top 10 Users by GenAI Efficiency Hours',
color='GenAI_Efficiency',
color_continuous_scale='Viridis'
)
fig1.update_layout(xaxis_tickangle=-45)
plots.append(fig1)
# 2. Project Analysis
if project_analysis is not None and not project_analysis.empty:
top_projects = project_analysis.head(8)
fig2 = px.bar(
top_projects,
x='Project',
y='Total_GenAI_Hours',
title='Top Projects by GenAI Hours',
color='Champion_Score',
color_continuous_scale='RdYlGn'
)
fig2.update_layout(xaxis_tickangle=-45)
plots.append(fig2)
# 3. AI Tools Usage
if ai_tool_counts:
ai_tools_df = pd.DataFrame({
'Tool': list(ai_tool_counts.keys()),
'Mentions': list(ai_tool_counts.values())
}).sort_values('Mentions', ascending=False).head(8)
fig3 = px.bar(
ai_tools_df,
x='Tool',
y='Mentions',
title='Most Mentioned AI Tools',
color='Mentions',
color_continuous_scale='Blues'
)
plots.append(fig3)
# 4. Use Cases Distribution
if use_case_counts:
use_cases_df = pd.DataFrame({
'Use Case': list(use_case_counts.keys()),
'Count': list(use_case_counts.values())
}).sort_values('Count', ascending=False)
fig4 = px.pie(
use_cases_df,
names='Use Case',
values='Count',
title='GenAI Use Cases Distribution'
)
plots.append(fig4)
# 5. Quality Score Distribution
if 'Description_Quality_Score' in result_df.columns and not result_df.empty:
fig5 = px.histogram(
result_df,
x='Description_Quality_Score',
title='Distribution of Champion Scores',
nbins=20,
color_discrete_sequence=['#2E86AB']
)
plots.append(fig5)
# 6. Utilization Analysis
if 'Utilization_Percentage' in result_df.columns and not result_df.empty:
sorted_util = result_df.sort_values('Utilization_Percentage', ascending=False).head(10)
fig6 = px.bar(
sorted_util,
x='User',
y='Utilization_Percentage',
title='Top 10 Users by Utilization Percentage',
color='Utilization_Percentage',
color_continuous_scale='RdYlGn'
)
fig6.update_layout(xaxis_tickangle=-45)
plots.append(fig6)
return plots
def process_file(file):
"""Main processing function for Gradio"""
if file is None:
return None, "Please upload a file", None, None, None, None, None, None
try:
# Read the file
if file.name.endswith('.csv'):
df = pd.read_csv(file.name)
else:
df = pd.read_excel(file.name)
# Check required columns
required_columns = ['User', 'GenAI use case description', 'GenAI Efficiency (Log time in hours)']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
return None, f"Missing required columns: {', '.join(missing_columns)}", None, None, None, None, None, None
# Process the data
result_df = process_genai_data(df)
project_analysis = analyze_projects_by_genai_hours(df)
ai_tool_counts = extract_ai_tools_from_descriptions(df)
use_case_counts = extract_use_cases_from_descriptions(df)
# Create Excel download
excel_data = create_download_excel(result_df)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
excel_filename = f"genai_processed_data_{timestamp}.xlsx"
# Save Excel file temporarily
with open(excel_filename, 'wb') as f:
f.write(excel_data)
# Create visualizations
plots = create_visualizations(result_df, project_analysis, ai_tool_counts, use_case_counts)
# Create summary statistics
summary_stats = create_summary_stats(result_df, project_analysis, ai_tool_counts, use_case_counts)
# Create insights text
insights = create_insights_text(result_df, project_analysis, ai_tool_counts, use_case_counts)
return (
result_df,
"Processing completed successfully!",
excel_filename,
summary_stats,
insights,
plots[0] if len(plots) > 0 else None,
plots[1] if len(plots) > 1 else None,
plots[2:] if len(plots) > 2 else []
)
except Exception as e:
return None, f"Error processing file: {str(e)}", None, None, None, None, None, None
def create_summary_stats(result_df, project_analysis, ai_tool_counts, use_case_counts):
"""Create summary statistics"""
if result_df is None or result_df.empty:
return "No data to analyze"
stats = []
stats.append(f"**πŸ“Š Summary Statistics**")
stats.append(f"β€’ Total Users: {len(result_df)}")
if 'GenAI_Efficiency' in result_df.columns:
avg_efficiency = result_df['GenAI_Efficiency'].mean()
total_efficiency = result_df['GenAI_Efficiency'].sum()
stats.append(f"β€’ Total GenAI Hours: {round(total_efficiency, 2)}")
stats.append(f"β€’ Average GenAI Efficiency: {round(avg_efficiency, 2)} hours")
if 'Utilization_Percentage' in result_df.columns:
avg_util = result_df['Utilization_Percentage'].mean()
stats.append(f"β€’ Average Utilization: {round(avg_util, 2)}%")
if 'Description_Quality_Score' in result_df.columns:
avg_quality = result_df['Description_Quality_Score'].mean()
stats.append(f"β€’ Average Champion Score: {round(avg_quality, 1)}/100")
if ai_tool_counts:
top_tool = max(ai_tool_counts.items(), key=lambda x: x[1])[0]
stats.append(f"β€’ Most Used AI Tool: {top_tool}")
if use_case_counts:
top_use_case = max(use_case_counts.items(), key=lambda x: x[1])[0]
stats.append(f"β€’ Top Use Case: {top_use_case}")
if project_analysis is not None and not project_analysis.empty:
top_project = project_analysis.iloc[0]
stats.append(f"β€’ Top Project: {top_project['Project']} ({round(top_project['Total_GenAI_Hours'], 2)} hours)")
return "\n".join(stats)
def create_insights_text(result_df, project_analysis, ai_tool_counts, use_case_counts):
"""Create insights text"""
if result_df is None or result_df.empty:
return "No insights available"
insights = []
insights.append("**πŸ” Key Insights**")
# Champion user
if 'GenAI_Efficiency' in result_df.columns and 'Description_Quality_Score' in result_df.columns:
# Calculate combined score for users
max_hours = result_df['GenAI_Efficiency'].max() or 1
max_quality = result_df['Description_Quality_Score'].max() or 1
result_df['Hours_Score'] = (result_df['GenAI_Efficiency'] / max_hours) * 100
result_df['Quality_Score_Normalized'] = (result_df['Description_Quality_Score'] / max_quality) * 100
result_df['Combined_Score'] = (result_df['Hours_Score'] * 0.6) + (result_df['Quality_Score_Normalized'] * 0.4)
champion_user = result_df.loc[result_df['Combined_Score'].idxmax()]
insights.append(f"πŸ† **Champion User:** {champion_user['User']}")
insights.append(f" - GenAI Hours: {round(champion_user['GenAI_Efficiency'], 2)}")
insights.append(f" - Champion Score: {round(champion_user['Description_Quality_Score'], 1)}/100")
insights.append("")
# Project insights
if project_analysis is not None and not project_analysis.empty:
top_project = project_analysis.iloc[0]
insights.append(f"πŸš€ **Top Project:** {top_project['Project']}")
insights.append(f" - Total Hours: {round(top_project['Total_GenAI_Hours'], 2)}")
insights.append(f" - Users Involved: {top_project['User_Count']}")
if 'Champion_Score' in top_project:
insights.append(f" - Champion Score: {round(top_project['Champion_Score'], 1)}/100")
insights.append("")
# Usage patterns
if 'GenAI_Efficiency' in result_df.columns:
active_users = len(result_df[result_df['GenAI_Efficiency'] > 0])
usage_rate = (active_users / len(result_df)) * 100
insights.append(f"πŸ“ˆ **Usage Analysis:**")
insights.append(f" - Users with GenAI activity: {active_users}/{len(result_df)} ({round(usage_rate, 1)}%)")
if active_users > 0:
high_users = len(result_df[result_df['GenAI_Efficiency'] >= 10])
insights.append(f" - High-usage users (β‰₯10 hours): {high_users}")
insights.append("")
# Tool and use case insights
if ai_tool_counts and use_case_counts:
insights.append("πŸ› οΈ **Technology Adoption:**")
top_3_tools = dict(sorted(ai_tool_counts.items(), key=lambda x: x[1], reverse=True)[:3])
for tool, count in top_3_tools.items():
insights.append(f" - {tool}: {count} mentions")
insights.append("")
insights.append("πŸ’‘ **Primary Use Cases:**")
top_3_cases = dict(sorted(use_case_counts.items(), key=lambda x: x[1], reverse=True)[:3])
for case, count in top_3_cases.items():
insights.append(f" - {case}: {count} instances")
return "\n".join(insights)
# Create Gradio interface
def create_gradio_app():
with gr.Blocks(title="GenAI Worklog Processor", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# πŸ€– GenAI Worklog Data Processor v1.1
This application processes worklog data to extract insights about GenAI usage:
βœ… Creates a list of unique users
βœ… Concatenates GenAI use case descriptions for each user
βœ… Captures GenAI efficiency values and metrics
βœ… Identifies projects with highest GenAI usage
βœ… Analyzes AI tools and use cases
βœ… Identifies prompt champions based on quality metrics
**Required columns:** User, GenAI use case description, GenAI Efficiency (Log time in hours)
**Optional columns:** Required, Logged, Date, Project, Project Category, Epic, Key
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="πŸ“ Upload CSV or Excel File",
file_types=[".csv", ".xlsx", ".xls"],
type="filepath"
)
process_btn = gr.Button("πŸš€ Process Data", variant="primary", size="lg")
with gr.Column(scale=1):
status_output = gr.Textbox(
label="πŸ“‹ Processing Status",
interactive=False,
lines=3
)
with gr.Tabs():
with gr.TabItem("πŸ“Š Processed Data"):
processed_data = gr.Dataframe(
label="Processed Results",
interactive=False,
wrap=True
)
download_file = gr.File(
label="πŸ’Ύ Download Excel Report",
interactive=False
)
with gr.TabItem("πŸ“ˆ Summary & Insights"):
with gr.Row():
with gr.Column():
summary_stats = gr.Markdown(label="Summary Statistics")
with gr.Column():
insights_text = gr.Markdown(label="Key Insights")
with gr.TabItem("πŸ“Š Visualizations"):
with gr.Row():
plot1 = gr.Plot(label="GenAI Efficiency by User")
plot2 = gr.Plot(label="Project Analysis")
with gr.Row():
plot3 = gr.Plot(label="AI Tools Usage")
plot4 = gr.Plot(label="Use Cases Distribution")
with gr.Row():
plot5 = gr.Plot(label="Quality Score Distribution")
plot6 = gr.Plot(label="Utilization Analysis")
with gr.TabItem("ℹ️ How Champion Scores Work"):
gr.Markdown("""
## πŸ† Champion Score Calculation
The Champion Score evaluates the quality and comprehensiveness of GenAI usage descriptions on a scale of 0-100:
### πŸ› οΈ Tools (20 points)
- **Basic mention** (10 pts): References one AI tool (GPT, Claude, etc.)
- **Multiple tools** (15 pts): Uses 2+ different AI tools
- **Specific versions** (+5 pts): Mentions specific models (GPT-4, Claude-2, etc.)
### πŸ’‘ Use Case (30 points)
- **Category identification** (5 pts each): Code generation, content creation, data analysis, etc.
- **Context specificity** (+5 pts): Clear "for/to" statements showing purpose
- **Domain expertise** (+5 pts): Technical terms (API, database, algorithm, etc.)
- **Work integration** (+5 pts): References projects, tasks, tickets, stories
### ✍️ Prompt Quality (30 points)
- **Length bonus**: 200+ chars (5 pts), 500+ chars (10 pts)
- **Prompt indicators** (10 pts): Quotes, mentions "prompt", "assist", "create", "generate"
- **Advanced techniques** (2 pts each): Step-by-step, chain of thought, few-shot, examples
### 🎯 Outcomes & Iteration (20 points)
- **Results mentioned** (2 pts each): "result", "output", "generated", "created", "improved"
- **Iteration indicators** (2 pts each): "refine", "revise", "update", "feedback"
- **Quantified impact** (+5 pts): Percentages, time saved, metrics
### πŸ… Score Interpretation
- **πŸ₯‡ 90-100**: Exceptional - Comprehensive usage with advanced techniques
- **πŸ₯ˆ 70-89**: Strong - Good tool usage with clear outcomes
- **πŸ₯‰ 50-69**: Moderate - Basic usage with some detail
- **πŸ“ 30-49**: Basic - Simple usage descriptions
- **⚠️ 0-29**: Minimal - Very basic or unclear usage
Higher scores indicate more sophisticated and effective GenAI adoption!
""")
# Event handlers
def process_and_update(file):
if file is None:
return (
None, "Please upload a file first", None,
"No data to display", "No insights available",
None, None, None, None, None, None
)
try:
# Read the file
if file.endswith('.csv'):
df = pd.read_csv(file)
else:
df = pd.read_excel(file)
# Check required columns
required_columns = ['User', 'GenAI use case description', 'GenAI Efficiency (Log time in hours)']
missing_columns = [col for col in required_columns if col not in df.columns]
if missing_columns:
return (
None, f"❌ Missing required columns: {', '.join(missing_columns)}", None,
"Cannot process data", "Missing required columns",
None, None, None, None, None, None
)
# Process the data
result_df = process_genai_data(df)
project_analysis = analyze_projects_by_genai_hours(df)
ai_tool_counts = extract_ai_tools_from_descriptions(df)
use_case_counts = extract_use_cases_from_descriptions(df)
# Create Excel download
excel_data = create_download_excel(result_df)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
excel_filename = f"genai_processed_data_{timestamp}.xlsx"
# Save Excel file temporarily
with open(excel_filename, 'wb') as f:
f.write(excel_data)
# Create visualizations
plots = create_visualizations(result_df, project_analysis, ai_tool_counts, use_case_counts)
# Create summary statistics and insights
summary_stats = create_summary_stats(result_df, project_analysis, ai_tool_counts, use_case_counts)
insights = create_insights_text(result_df, project_analysis, ai_tool_counts, use_case_counts)
return (
result_df,
"βœ… Processing completed successfully!",
excel_filename,
summary_stats,
insights,
plots[0] if len(plots) > 0 else None,
plots[1] if len(plots) > 1 else None,
plots[2] if len(plots) > 2 else None,
plots[3] if len(plots) > 3 else None,
plots[4] if len(plots) > 4 else None,
plots[5] if len(plots) > 5 else None
)
except Exception as e:
error_msg = f"❌ Error processing file: {str(e)}"
return (
None, error_msg, None,
"Error occurred", error_msg,
None, None, None, None, None, None
)
process_btn.click(
fn=process_and_update,
inputs=[file_input],
outputs=[
processed_data, status_output, download_file,
summary_stats, insights_text,
plot1, plot2, plot3, plot4, plot5, plot6
]
)
# Note: Examples removed since we don't have sample files
# Users should upload their own CSV/Excel files
gr.Markdown("""
---
**Enhanced GenAI Worklog Processor** β€’ Built with Gradio and Pandas
πŸ’‘ **Tips for best results:**
- Ensure your CSV/Excel file has the required columns
- GenAI descriptions should be detailed for better Champion Scores
- Include project information for comprehensive analysis
""")
return app
# Helper function to assign team categories (referenced in original code)
def assign_team_category(row, max_quality, max_hours):
"""Assign team category based on usage patterns"""
quality_score = row['Champion_Score']
hours = row['GenAI_Efficiency']
# Normalize scores
quality_norm = (quality_score / max_quality) * 100 if max_quality > 0 else 0
hours_norm = (hours / max_hours) * 100 if max_hours > 0 else 0
if quality_norm >= 70 and hours_norm >= 50:
return "πŸš€ Power Users", "High quality usage with significant hours"
elif quality_norm >= 70:
return "🎯 Quality Champions", "Excellent usage quality, moderate hours"
elif hours_norm >= 70:
return "⚑ High Volume", "Heavy usage, opportunity for quality improvement"
elif quality_norm >= 40 or hours_norm >= 30:
return "πŸ“ˆ Growing Users", "Developing GenAI skills and usage"
elif hours > 0:
return "🌱 Beginners", "Starting GenAI journey"
else:
return "πŸ’€ Inactive", "No recorded GenAI usage"
# Launch the app
if __name__ == "__main__":
app = create_gradio_app()
app.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
)