Spaces:
Build error
Build error
added console info
Browse files
app.py
CHANGED
|
@@ -1,11 +1,16 @@
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from helper import (
|
| 3 |
load_dataset, search, get_file_paths,
|
| 4 |
get_cordinates, get_images_from_s3_to_display,
|
| 5 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
| 6 |
)
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
# Load environment variables
|
| 11 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
|
@@ -15,8 +20,8 @@ AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
| 15 |
datasets = ["WayveScenes", "MajorTom-Europe"]
|
| 16 |
description = {
|
| 17 |
"StopSign_test": "A test dataset for me",
|
| 18 |
-
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes
|
| 19 |
-
"MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe
|
| 20 |
}
|
| 21 |
selection = {
|
| 22 |
'WayveScenes': [1, 8],
|
|
@@ -26,19 +31,24 @@ selection = {
|
|
| 26 |
# AWS S3 bucket name
|
| 27 |
bucket_name = "datasets-quasara-io"
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Streamlit App
|
| 30 |
def main():
|
| 31 |
# Initialize session state variables if not already initialized
|
| 32 |
if 'search_in_small_objects' not in st.session_state:
|
| 33 |
st.session_state.search_in_small_objects = False
|
| 34 |
-
|
| 35 |
if 'dataset_number' not in st.session_state:
|
| 36 |
st.session_state.dataset_number = 1
|
| 37 |
-
|
| 38 |
if 'df' not in st.session_state:
|
| 39 |
st.session_state.df = None
|
| 40 |
|
| 41 |
st.title("Semantic Search and Image Display")
|
|
|
|
| 42 |
|
| 43 |
# Select dataset from dropdown
|
| 44 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
|
@@ -54,12 +64,10 @@ def main():
|
|
| 54 |
st.session_state.search_in_small_objects = True
|
| 55 |
st.text("Small Object Search Enabled")
|
| 56 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
| 57 |
-
st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
|
| 58 |
else:
|
| 59 |
st.session_state.search_in_small_objects = False
|
| 60 |
st.text("Small Object Search Disabled")
|
| 61 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
| 62 |
-
st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")
|
| 63 |
|
| 64 |
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=20000, value=10000)
|
| 65 |
st.text(f'The smaller the dataset, the faster the search will work.')
|
|
@@ -67,28 +75,26 @@ def main():
|
|
| 67 |
# Load dataset with limit only if not already loaded
|
| 68 |
if st.button("Load Dataset"):
|
| 69 |
try:
|
| 70 |
-
# Clear old dataset from memory
|
| 71 |
-
if st.session_state.df is not None:
|
| 72 |
-
st.session_state.df = None # Clear the old dataset
|
| 73 |
-
st.info("Previous dataset cleared from memory.")
|
| 74 |
-
|
| 75 |
loading_dataset_text = st.empty()
|
| 76 |
loading_dataset_text.text("Loading Dataset...")
|
| 77 |
loading_dataset_bar = st.progress(0)
|
|
|
|
| 78 |
# Simulate dataset loading progress
|
| 79 |
for i in range(0, 100, 25):
|
| 80 |
-
time.sleep(0.2)
|
| 81 |
loading_dataset_bar.progress(i + 25)
|
| 82 |
|
| 83 |
-
|
| 84 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
| 85 |
-
# Store loaded dataset in session state
|
| 86 |
st.session_state.df = df
|
|
|
|
| 87 |
loading_dataset_bar.progress(100)
|
| 88 |
loading_dataset_text.text("Dataset loaded successfully!")
|
| 89 |
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
|
|
|
| 90 |
|
| 91 |
except Exception as e:
|
|
|
|
| 92 |
st.error(f"Failed to load dataset: {e}")
|
| 93 |
|
| 94 |
# Input search query
|
|
@@ -104,25 +110,23 @@ def main():
|
|
| 104 |
st.warning("Please enter a search query.")
|
| 105 |
else:
|
| 106 |
try:
|
| 107 |
-
# Progress bar for search
|
| 108 |
search_loading_text = st.empty()
|
| 109 |
search_loading_text.text("Searching...")
|
| 110 |
search_progress_bar = st.progress(0)
|
| 111 |
|
| 112 |
-
|
| 113 |
df = st.session_state.df
|
| 114 |
if st.session_state.search_in_small_objects:
|
| 115 |
results = search(query, df, limit)
|
| 116 |
top_k_paths = get_file_paths(df, results)
|
| 117 |
top_k_cordinates = get_cordinates(df, results)
|
| 118 |
else:
|
| 119 |
-
# Normal Search
|
| 120 |
results = search(query, df, limit)
|
| 121 |
top_k_paths = get_file_paths(df, results)
|
| 122 |
|
| 123 |
-
# Complete the search progress
|
| 124 |
search_progress_bar.progress(100)
|
| 125 |
search_loading_text.text("Search completed!")
|
|
|
|
| 126 |
|
| 127 |
# Load Images with Bounding Boxes if applicable
|
| 128 |
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
|
@@ -134,6 +138,7 @@ def main():
|
|
| 134 |
st.write("No results found.")
|
| 135 |
|
| 136 |
except Exception as e:
|
|
|
|
| 137 |
st.error(f"Search failed: {e}")
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
import psutil
|
| 6 |
from helper import (
|
| 7 |
load_dataset, search, get_file_paths,
|
| 8 |
get_cordinates, get_images_from_s3_to_display,
|
| 9 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
| 10 |
)
|
| 11 |
+
|
| 12 |
+
# Configure logging
|
| 13 |
+
logging.basicConfig(level=logging.INFO)
|
| 14 |
|
| 15 |
# Load environment variables
|
| 16 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
|
|
|
| 20 |
datasets = ["WayveScenes", "MajorTom-Europe"]
|
| 21 |
description = {
|
| 22 |
"StopSign_test": "A test dataset for me",
|
| 23 |
+
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes.",
|
| 24 |
+
"MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe."
|
| 25 |
}
|
| 26 |
selection = {
|
| 27 |
'WayveScenes': [1, 8],
|
|
|
|
| 31 |
# AWS S3 bucket name
|
| 32 |
bucket_name = "datasets-quasara-io"
|
| 33 |
|
| 34 |
+
# Function to log CPU and memory usage
|
| 35 |
+
def log_resource_usage(stage):
|
| 36 |
+
cpu_usage = psutil.cpu_percent(interval=1)
|
| 37 |
+
memory_info = psutil.virtual_memory()
|
| 38 |
+
logging.info(f"{stage} - CPU Usage: {cpu_usage}%, Memory Usage: {memory_info.percent}%")
|
| 39 |
+
|
| 40 |
# Streamlit App
|
| 41 |
def main():
|
| 42 |
# Initialize session state variables if not already initialized
|
| 43 |
if 'search_in_small_objects' not in st.session_state:
|
| 44 |
st.session_state.search_in_small_objects = False
|
|
|
|
| 45 |
if 'dataset_number' not in st.session_state:
|
| 46 |
st.session_state.dataset_number = 1
|
|
|
|
| 47 |
if 'df' not in st.session_state:
|
| 48 |
st.session_state.df = None
|
| 49 |
|
| 50 |
st.title("Semantic Search and Image Display")
|
| 51 |
+
log_resource_usage("Initialization")
|
| 52 |
|
| 53 |
# Select dataset from dropdown
|
| 54 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
|
|
|
| 64 |
st.session_state.search_in_small_objects = True
|
| 65 |
st.text("Small Object Search Enabled")
|
| 66 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
|
|
|
| 67 |
else:
|
| 68 |
st.session_state.search_in_small_objects = False
|
| 69 |
st.text("Small Object Search Disabled")
|
| 70 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
|
|
|
| 71 |
|
| 72 |
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=20000, value=10000)
|
| 73 |
st.text(f'The smaller the dataset, the faster the search will work.')
|
|
|
|
| 75 |
# Load dataset with limit only if not already loaded
|
| 76 |
if st.button("Load Dataset"):
|
| 77 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
loading_dataset_text = st.empty()
|
| 79 |
loading_dataset_text.text("Loading Dataset...")
|
| 80 |
loading_dataset_bar = st.progress(0)
|
| 81 |
+
|
| 82 |
# Simulate dataset loading progress
|
| 83 |
for i in range(0, 100, 25):
|
| 84 |
+
time.sleep(0.2)
|
| 85 |
loading_dataset_bar.progress(i + 25)
|
| 86 |
|
| 87 |
+
log_resource_usage("Before Loading Dataset")
|
| 88 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
|
|
|
| 89 |
st.session_state.df = df
|
| 90 |
+
|
| 91 |
loading_dataset_bar.progress(100)
|
| 92 |
loading_dataset_text.text("Dataset loaded successfully!")
|
| 93 |
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
| 94 |
+
log_resource_usage("After Loading Dataset")
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
+
logging.error(f"Failed to load dataset: {e}")
|
| 98 |
st.error(f"Failed to load dataset: {e}")
|
| 99 |
|
| 100 |
# Input search query
|
|
|
|
| 110 |
st.warning("Please enter a search query.")
|
| 111 |
else:
|
| 112 |
try:
|
|
|
|
| 113 |
search_loading_text = st.empty()
|
| 114 |
search_loading_text.text("Searching...")
|
| 115 |
search_progress_bar = st.progress(0)
|
| 116 |
|
| 117 |
+
log_resource_usage("Before Search")
|
| 118 |
df = st.session_state.df
|
| 119 |
if st.session_state.search_in_small_objects:
|
| 120 |
results = search(query, df, limit)
|
| 121 |
top_k_paths = get_file_paths(df, results)
|
| 122 |
top_k_cordinates = get_cordinates(df, results)
|
| 123 |
else:
|
|
|
|
| 124 |
results = search(query, df, limit)
|
| 125 |
top_k_paths = get_file_paths(df, results)
|
| 126 |
|
|
|
|
| 127 |
search_progress_bar.progress(100)
|
| 128 |
search_loading_text.text("Search completed!")
|
| 129 |
+
log_resource_usage("After Search")
|
| 130 |
|
| 131 |
# Load Images with Bounding Boxes if applicable
|
| 132 |
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
|
|
|
| 138 |
st.write("No results found.")
|
| 139 |
|
| 140 |
except Exception as e:
|
| 141 |
+
logging.error(f"Search failed: {e}")
|
| 142 |
st.error(f"Search failed: {e}")
|
| 143 |
|
| 144 |
if __name__ == "__main__":
|