Spaces:
Build error
Build error
remove load dataset button - automatic loading
Browse files
app.py
CHANGED
|
@@ -1,5 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from
|
| 3 |
load_dataset, search, get_file_paths,
|
| 4 |
get_cordinates, get_images_from_s3_to_display,
|
| 5 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
|
@@ -13,7 +19,7 @@ AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
|
| 13 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 14 |
|
| 15 |
# Predefined list of datasets
|
| 16 |
-
datasets = ["MajorTom-Germany", "MajorTom-Netherlands"
|
| 17 |
folder_path_dict = {
|
| 18 |
"WayveScenes": "WayveScenes/",
|
| 19 |
"MajorTom-Germany": "MajorTOM-DE/",
|
|
@@ -40,6 +46,7 @@ example_queries = {
|
|
| 40 |
"MajorTom-UK": "Airports, Golf Courses, Wind Mills, Solar Panels "
|
| 41 |
}
|
| 42 |
|
|
|
|
| 43 |
# AWS S3 bucket name
|
| 44 |
bucket_name = "datasets-quasara-io"
|
| 45 |
|
|
@@ -83,34 +90,40 @@ def main():
|
|
| 83 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=1)
|
| 84 |
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=0, max_value=min(total_rows, 80000), value=int(min(total_rows, 80000)/2))
|
| 85 |
st.text(f'The smaller the dataset the faster the search will work.')
|
| 86 |
-
st.text('Please click Load Dataset to finalize selection for search')
|
| 87 |
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
# Simulate dataset loading progress
|
| 95 |
-
for i in range(0, 100, 25):
|
| 96 |
-
time.sleep(0.2) # Simulate work being done
|
| 97 |
-
loading_dataset_bar.progress(i + 25)
|
| 98 |
-
|
| 99 |
-
# Load dataset
|
| 100 |
-
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
| 101 |
|
| 102 |
-
#
|
| 103 |
-
st.session_state.df = df
|
| 104 |
-
loading_dataset_bar.progress(100)
|
| 105 |
-
loading_dataset_text.text("Dataset loaded successfully!")
|
| 106 |
-
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
| 107 |
-
|
| 108 |
-
# After dataset is loaded, show search options
|
| 109 |
query = st.text_input("Enter your search query")
|
| 110 |
st.text(f"Example Queries for your Dataset: {example_queries[dataset_name]}")
|
| 111 |
# Number of results to display
|
| 112 |
-
limit = st.number_input("Number of results to display", min_value=1, max_value=
|
| 113 |
-
|
| 114 |
# Search button
|
| 115 |
if st.button("Search"):
|
| 116 |
# Validate input
|
|
@@ -136,35 +149,23 @@ def main():
|
|
| 136 |
top_k_paths = get_file_paths(df, results)
|
| 137 |
search_type = 'Main'
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
else:
|
| 151 |
-
st.write("No results found.")
|
| 152 |
-
|
| 153 |
-
except Exception as e:
|
| 154 |
-
if 'None' in e:
|
| 155 |
-
st.warning("Please Click Load Dataset")
|
| 156 |
else:
|
| 157 |
-
st.
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
if __name__ == "__main__":
|
| 163 |
-
main()
|
| 164 |
-
|
| 165 |
-
|
| 166 |
|
| 167 |
|
|
|
|
|
|
|
| 168 |
|
| 169 |
if __name__ == "__main__":
|
| 170 |
-
main()
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
Share
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
You said:
|
| 7 |
import streamlit as st
|
| 8 |
+
from helper3 import (
|
| 9 |
load_dataset, search, get_file_paths,
|
| 10 |
get_cordinates, get_images_from_s3_to_display,
|
| 11 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
|
|
|
| 19 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
| 20 |
|
| 21 |
# Predefined list of datasets
|
| 22 |
+
datasets = ["WayveScenes", "MajorTom-Germany", "MajorTom-Netherlands"]
|
| 23 |
folder_path_dict = {
|
| 24 |
"WayveScenes": "WayveScenes/",
|
| 25 |
"MajorTom-Germany": "MajorTOM-DE/",
|
|
|
|
| 46 |
"MajorTom-UK": "Airports, Golf Courses, Wind Mills, Solar Panels "
|
| 47 |
}
|
| 48 |
|
| 49 |
+
|
| 50 |
# AWS S3 bucket name
|
| 51 |
bucket_name = "datasets-quasara-io"
|
| 52 |
|
|
|
|
| 90 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=1)
|
| 91 |
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=0, max_value=min(total_rows, 80000), value=int(min(total_rows, 80000)/2))
|
| 92 |
st.text(f'The smaller the dataset the faster the search will work.')
|
|
|
|
| 93 |
|
| 94 |
+
# Load dataset with limit only if not already loaded
|
| 95 |
|
| 96 |
+
try:
|
| 97 |
+
loading_dataset_text = st.empty()
|
| 98 |
+
loading_dataset_text.text("Loading Dataset...")
|
| 99 |
+
loading_dataset_bar = st.progress(0)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
# Simulate dataset loading progress
|
| 103 |
+
for i in range(0, 100, 25):
|
| 104 |
+
time.sleep(0.2) # Simulate work being done
|
| 105 |
+
loading_dataset_bar.progress(i + 25)
|
| 106 |
+
|
| 107 |
+
# Load dataset
|
| 108 |
+
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
| 109 |
+
|
| 110 |
+
# Store loaded dataset in session state
|
| 111 |
+
st.session_state.df = df
|
| 112 |
+
loading_dataset_bar.progress(100)
|
| 113 |
+
loading_dataset_text.text("Dataset loaded successfully!")
|
| 114 |
+
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
except Exception as e:
|
| 118 |
+
st.error(f"Failed to load dataset: {e}")
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# Input search query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
query = st.text_input("Enter your search query")
|
| 123 |
st.text(f"Example Queries for your Dataset: {example_queries[dataset_name]}")
|
| 124 |
# Number of results to display
|
| 125 |
+
limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)
|
| 126 |
+
|
| 127 |
# Search button
|
| 128 |
if st.button("Search"):
|
| 129 |
# Validate input
|
|
|
|
| 149 |
top_k_paths = get_file_paths(df, results)
|
| 150 |
search_type = 'Main'
|
| 151 |
|
| 152 |
+
# Complete the search progress
|
| 153 |
+
search_progress_bar.progress(100)
|
| 154 |
+
search_loading_text.text(f"Search completed among {dataset_limit} rows for {dataset_name} in {search_type} {st.session_state.dataset_number}")
|
| 155 |
+
|
| 156 |
+
# Load Images with Bounding Boxes if applicable
|
| 157 |
+
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
| 158 |
+
get_images_with_bounding_boxes_from_s3(bucket_name, top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
| 159 |
+
elif not st.session_state.search_in_small_objects and top_k_paths:
|
| 160 |
+
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
| 161 |
+
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
| 162 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
else:
|
| 164 |
+
st.write("No results found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
|
| 167 |
+
except Exception as e:
|
| 168 |
+
st.error(f"Search failed: {e}")
|
| 169 |
|
| 170 |
if __name__ == "__main__":
|
| 171 |
+
main()
|