Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import sys | |
from pathlib import Path | |
import subprocess | |
import julius | |
import torch as th | |
import torchaudio as ta | |
from .audio import AudioFile, convert_audio_channels | |
from .pretrained import is_pretrained, load_pretrained | |
from .utils import apply_model, load_model | |
def load_track(track, device, audio_channels, samplerate): | |
errors = {} | |
wav = None | |
try: | |
wav = AudioFile(track).read( | |
streams=0, | |
samplerate=samplerate, | |
channels=audio_channels).to(device) | |
except FileNotFoundError: | |
errors['ffmpeg'] = 'Ffmpeg is not installed.' | |
except subprocess.CalledProcessError: | |
errors['ffmpeg'] = 'FFmpeg could not read the file.' | |
if wav is None: | |
try: | |
wav, sr = ta.load(str(track)) | |
except RuntimeError as err: | |
errors['torchaudio'] = err.args[0] | |
else: | |
wav = convert_audio_channels(wav, audio_channels) | |
wav = wav.to(device) | |
wav = julius.resample_frac(wav, sr, samplerate) | |
if wav is None: | |
print(f"Could not load file {track}. " | |
"Maybe it is not a supported file format? ") | |
for backend, error in errors.items(): | |
print(f"When trying to load using {backend}, got the following error: {error}") | |
sys.exit(1) | |
return wav | |
def encode_mp3(wav, path, bitrate=320, samplerate=44100, channels=2, verbose=False): | |
try: | |
import lameenc | |
except ImportError: | |
print("Failed to call lame encoder. Maybe it is not installed? " | |
"On windows, run `python.exe -m pip install -U lameenc`, " | |
"on OSX/Linux, run `python3 -m pip install -U lameenc`, " | |
"then try again.", file=sys.stderr) | |
sys.exit(1) | |
encoder = lameenc.Encoder() | |
encoder.set_bit_rate(bitrate) | |
encoder.set_in_sample_rate(samplerate) | |
encoder.set_channels(channels) | |
encoder.set_quality(2) # 2-highest, 7-fastest | |
if not verbose: | |
encoder.silence() | |
wav = wav.transpose(0, 1).numpy() | |
mp3_data = encoder.encode(wav.tobytes()) | |
mp3_data += encoder.flush() | |
with open(path, "wb") as f: | |
f.write(mp3_data) | |
def main(): | |
parser = argparse.ArgumentParser("demucs.separate", | |
description="Separate the sources for the given tracks") | |
parser.add_argument("tracks", nargs='+', type=Path, default=[], help='Path to tracks') | |
parser.add_argument("-n", | |
"--name", | |
default="demucs_quantized", | |
help="Model name. See README.md for the list of pretrained models. " | |
"Default is demucs_quantized.") | |
parser.add_argument("-v", "--verbose", action="store_true") | |
parser.add_argument("-o", | |
"--out", | |
type=Path, | |
default=Path("separated"), | |
help="Folder where to put extracted tracks. A subfolder " | |
"with the model name will be created.") | |
parser.add_argument("--models", | |
type=Path, | |
default=Path("models"), | |
help="Path to trained models. " | |
"Also used to store downloaded pretrained models") | |
parser.add_argument("-d", | |
"--device", | |
default="cuda" if th.cuda.is_available() else "cpu", | |
help="Device to use, default is cuda if available else cpu") | |
parser.add_argument("--shifts", | |
default=0, | |
type=int, | |
help="Number of random shifts for equivariant stabilization." | |
"Increase separation time but improves quality for Demucs. 10 was used " | |
"in the original paper.") | |
parser.add_argument("--overlap", | |
default=0.25, | |
type=float, | |
help="Overlap between the splits.") | |
parser.add_argument("--no-split", | |
action="store_false", | |
dest="split", | |
default=True, | |
help="Doesn't split audio in chunks. This can use large amounts of memory.") | |
parser.add_argument("--float32", | |
action="store_true", | |
help="Convert the output wavefile to use pcm f32 format instead of s16. " | |
"This should not make a difference if you just plan on listening to the " | |
"audio but might be needed to compute exactly metrics like SDR etc.") | |
parser.add_argument("--int16", | |
action="store_false", | |
dest="float32", | |
help="Opposite of --float32, here for compatibility.") | |
parser.add_argument("--mp3", action="store_true", | |
help="Convert the output wavs to mp3.") | |
parser.add_argument("--mp3-bitrate", | |
default=320, | |
type=int, | |
help="Bitrate of converted mp3.") | |
args = parser.parse_args() | |
name = args.name + ".th" | |
model_path = args.models / name | |
if model_path.is_file(): | |
model = load_model(model_path) | |
else: | |
if is_pretrained(args.name): | |
model = load_pretrained(args.name) | |
else: | |
print(f"No pre-trained model {args.name}", file=sys.stderr) | |
sys.exit(1) | |
model.to(args.device) | |
out = args.out / args.name | |
out.mkdir(parents=True, exist_ok=True) | |
print(f"Separated tracks will be stored in {out.resolve()}") | |
for track in args.tracks: | |
if not track.exists(): | |
print( | |
f"File {track} does not exist. If the path contains spaces, " | |
"please try again after surrounding the entire path with quotes \"\".", | |
file=sys.stderr) | |
continue | |
print(f"Separating track {track}") | |
wav = load_track(track, args.device, model.audio_channels, model.samplerate) | |
ref = wav.mean(0) | |
wav = (wav - ref.mean()) / ref.std() | |
sources = apply_model(model, wav, shifts=args.shifts, split=args.split, | |
overlap=args.overlap, progress=True) | |
sources = sources * ref.std() + ref.mean() | |
track_folder = out / track.name.rsplit(".", 1)[0] | |
track_folder.mkdir(exist_ok=True) | |
for source, name in zip(sources, model.sources): | |
source = source / max(1.01 * source.abs().max(), 1) | |
if args.mp3 or not args.float32: | |
source = (source * 2**15).clamp_(-2**15, 2**15 - 1).short() | |
source = source.cpu() | |
stem = str(track_folder / name) | |
if args.mp3: | |
encode_mp3(source, stem + ".mp3", | |
bitrate=args.mp3_bitrate, | |
samplerate=model.samplerate, | |
channels=model.audio_channels, | |
verbose=args.verbose) | |
else: | |
wavname = str(track_folder / f"{name}.wav") | |
ta.save(wavname, source, sample_rate=model.samplerate) | |
if __name__ == "__main__": | |
main() | |