Spaces:
Runtime error
Runtime error
add safety checker
Browse files- app.py +55 -29
- safety_checker.py +137 -0
app.py
CHANGED
@@ -12,7 +12,7 @@ from PIL import Image
|
|
12 |
import gradio as gr
|
13 |
import time
|
14 |
from safetensors.torch import load_file
|
15 |
-
|
16 |
|
17 |
# Constants
|
18 |
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
|
@@ -28,14 +28,16 @@ CHECKPOINT = "sdxl_lightning_2step_unet.safetensors"
|
|
28 |
# }
|
29 |
|
30 |
|
31 |
-
|
|
|
32 |
# check if MPS is available OSX only M1/M2/M3 chips
|
33 |
|
34 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
torch_device = device
|
36 |
torch_dtype = torch.float16
|
37 |
|
38 |
-
print(f"
|
|
|
39 |
print(f"device: {device}")
|
40 |
|
41 |
|
@@ -44,34 +46,60 @@ unet = UNet2DConditionModel.from_config(BASE, subfolder="unet").to(
|
|
44 |
)
|
45 |
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
|
46 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
47 |
-
BASE, unet=unet, torch_dtype=torch.float16, variant="fp16"
|
48 |
).to("cuda")
|
49 |
|
50 |
# Ensure sampler uses "trailing" timesteps.
|
51 |
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
52 |
pipe.scheduler.config, timestep_spacing="trailing"
|
53 |
)
|
54 |
-
|
55 |
pipe.set_progress_bar_config(disable=True)
|
56 |
-
|
57 |
-
|
58 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
except ImportError:
|
62 |
-
print("xformers not installed, skip")
|
63 |
-
try:
|
64 |
-
import triton
|
65 |
|
66 |
-
config.enable_triton = True
|
67 |
-
except ImportError:
|
68 |
-
print("Triton not installed, skip")
|
69 |
-
# CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
|
70 |
-
# But it can increase the amount of GPU memory used.
|
71 |
-
# For StableVideoDiffusionPipeline it is not needed.
|
72 |
-
config.enable_cuda_graph = True
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
|
77 |
def predict(prompt, seed=1231231):
|
@@ -87,14 +115,12 @@ def predict(prompt, seed=1231231):
|
|
87 |
output_type="pil",
|
88 |
)
|
89 |
print(f"Pipe took {time.time() - last_time} seconds")
|
90 |
-
|
91 |
-
results.
|
92 |
-
if
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
gr.Warning("NSFW content detected.")
|
97 |
-
return Image.new("RGB", (512, 512))
|
98 |
return results.images[0]
|
99 |
|
100 |
|
|
|
12 |
import gradio as gr
|
13 |
import time
|
14 |
from safetensors.torch import load_file
|
15 |
+
|
16 |
|
17 |
# Constants
|
18 |
BASE = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
28 |
# }
|
29 |
|
30 |
|
31 |
+
SFAST_COMPILE = os.environ.get("SFAST_COMPILE", "0") == "1"
|
32 |
+
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
33 |
# check if MPS is available OSX only M1/M2/M3 chips
|
34 |
|
35 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
36 |
torch_device = device
|
37 |
torch_dtype = torch.float16
|
38 |
|
39 |
+
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
|
40 |
+
print(f"SFAST_COMPILE: {SFAST_COMPILE}")
|
41 |
print(f"device: {device}")
|
42 |
|
43 |
|
|
|
46 |
)
|
47 |
unet.load_state_dict(load_file(hf_hub_download(REPO, CHECKPOINT), device="cuda"))
|
48 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
49 |
+
BASE, unet=unet, torch_dtype=torch.float16, variant="fp16", safety_checker=False
|
50 |
).to("cuda")
|
51 |
|
52 |
# Ensure sampler uses "trailing" timesteps.
|
53 |
pipe.scheduler = EulerDiscreteScheduler.from_config(
|
54 |
pipe.scheduler.config, timestep_spacing="trailing"
|
55 |
)
|
|
|
56 |
pipe.set_progress_bar_config(disable=True)
|
57 |
+
if SAFETY_CHECKER:
|
58 |
+
from safety_checker import StableDiffusionSafetyChecker
|
59 |
+
from transformers import CLIPFeatureExtractor
|
60 |
+
|
61 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
62 |
+
"CompVis/stable-diffusion-safety-checker"
|
63 |
+
).to(device)
|
64 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained(
|
65 |
+
"openai/clip-vit-base-patch32"
|
66 |
+
)
|
67 |
+
|
68 |
+
def check_nsfw_images(
|
69 |
+
images: list[Image.Image],
|
70 |
+
) -> tuple[list[Image.Image], list[bool]]:
|
71 |
+
safety_checker_input = feature_extractor(images, return_tensors="pt").to(device)
|
72 |
+
has_nsfw_concepts = safety_checker(
|
73 |
+
images=[images],
|
74 |
+
clip_input=safety_checker_input.pixel_values.to(torch_device),
|
75 |
+
)
|
76 |
|
77 |
+
return images, has_nsfw_concepts
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
if SFAST_COMPILE:
|
81 |
+
from sfast.compilers.diffusion_pipeline_compiler import compile, CompilationConfig
|
82 |
+
|
83 |
+
# sfast compilation
|
84 |
+
config = CompilationConfig.Default()
|
85 |
+
try:
|
86 |
+
import xformers
|
87 |
+
|
88 |
+
config.enable_xformers = True
|
89 |
+
except ImportError:
|
90 |
+
print("xformers not installed, skip")
|
91 |
+
try:
|
92 |
+
import triton
|
93 |
+
|
94 |
+
config.enable_triton = True
|
95 |
+
except ImportError:
|
96 |
+
print("Triton not installed, skip")
|
97 |
+
# CUDA Graph is suggested for small batch sizes and small resolutions to reduce CPU overhead.
|
98 |
+
# But it can increase the amount of GPU memory used.
|
99 |
+
# For StableVideoDiffusionPipeline it is not needed.
|
100 |
+
config.enable_cuda_graph = True
|
101 |
+
|
102 |
+
pipe = compile(pipe, config)
|
103 |
|
104 |
|
105 |
def predict(prompt, seed=1231231):
|
|
|
115 |
output_type="pil",
|
116 |
)
|
117 |
print(f"Pipe took {time.time() - last_time} seconds")
|
118 |
+
if SAFETY_CHECKER:
|
119 |
+
images, has_nsfw_concepts = check_nsfw_images(results.images)
|
120 |
+
if any(has_nsfw_concepts):
|
121 |
+
gr.Warning("NSFW content detected.")
|
122 |
+
return Image.new("RGB", (512, 512))
|
123 |
+
return images[0]
|
|
|
|
|
124 |
return results.images[0]
|
125 |
|
126 |
|
safety_checker.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
|
19 |
+
|
20 |
+
|
21 |
+
def cosine_distance(image_embeds, text_embeds):
|
22 |
+
normalized_image_embeds = nn.functional.normalize(image_embeds)
|
23 |
+
normalized_text_embeds = nn.functional.normalize(text_embeds)
|
24 |
+
return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
|
25 |
+
|
26 |
+
|
27 |
+
class StableDiffusionSafetyChecker(PreTrainedModel):
|
28 |
+
config_class = CLIPConfig
|
29 |
+
|
30 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
31 |
+
|
32 |
+
def __init__(self, config: CLIPConfig):
|
33 |
+
super().__init__(config)
|
34 |
+
|
35 |
+
self.vision_model = CLIPVisionModel(config.vision_config)
|
36 |
+
self.visual_projection = nn.Linear(
|
37 |
+
config.vision_config.hidden_size, config.projection_dim, bias=False
|
38 |
+
)
|
39 |
+
|
40 |
+
self.concept_embeds = nn.Parameter(
|
41 |
+
torch.ones(17, config.projection_dim), requires_grad=False
|
42 |
+
)
|
43 |
+
self.special_care_embeds = nn.Parameter(
|
44 |
+
torch.ones(3, config.projection_dim), requires_grad=False
|
45 |
+
)
|
46 |
+
|
47 |
+
self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
|
48 |
+
self.special_care_embeds_weights = nn.Parameter(
|
49 |
+
torch.ones(3), requires_grad=False
|
50 |
+
)
|
51 |
+
|
52 |
+
@torch.no_grad()
|
53 |
+
def forward(self, clip_input, images):
|
54 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
55 |
+
image_embeds = self.visual_projection(pooled_output)
|
56 |
+
|
57 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
58 |
+
special_cos_dist = (
|
59 |
+
cosine_distance(image_embeds, self.special_care_embeds)
|
60 |
+
.cpu()
|
61 |
+
.float()
|
62 |
+
.numpy()
|
63 |
+
)
|
64 |
+
cos_dist = (
|
65 |
+
cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
|
66 |
+
)
|
67 |
+
|
68 |
+
result = []
|
69 |
+
batch_size = image_embeds.shape[0]
|
70 |
+
for i in range(batch_size):
|
71 |
+
result_img = {
|
72 |
+
"special_scores": {},
|
73 |
+
"special_care": [],
|
74 |
+
"concept_scores": {},
|
75 |
+
"bad_concepts": [],
|
76 |
+
}
|
77 |
+
|
78 |
+
# increase this value to create a stronger `nfsw` filter
|
79 |
+
# at the cost of increasing the possibility of filtering benign images
|
80 |
+
adjustment = 0.0
|
81 |
+
|
82 |
+
for concept_idx in range(len(special_cos_dist[0])):
|
83 |
+
concept_cos = special_cos_dist[i][concept_idx]
|
84 |
+
concept_threshold = self.special_care_embeds_weights[concept_idx].item()
|
85 |
+
result_img["special_scores"][concept_idx] = round(
|
86 |
+
concept_cos - concept_threshold + adjustment, 3
|
87 |
+
)
|
88 |
+
if result_img["special_scores"][concept_idx] > 0:
|
89 |
+
result_img["special_care"].append(
|
90 |
+
{concept_idx, result_img["special_scores"][concept_idx]}
|
91 |
+
)
|
92 |
+
adjustment = 0.01
|
93 |
+
|
94 |
+
for concept_idx in range(len(cos_dist[0])):
|
95 |
+
concept_cos = cos_dist[i][concept_idx]
|
96 |
+
concept_threshold = self.concept_embeds_weights[concept_idx].item()
|
97 |
+
result_img["concept_scores"][concept_idx] = round(
|
98 |
+
concept_cos - concept_threshold + adjustment, 3
|
99 |
+
)
|
100 |
+
if result_img["concept_scores"][concept_idx] > 0:
|
101 |
+
result_img["bad_concepts"].append(concept_idx)
|
102 |
+
|
103 |
+
result.append(result_img)
|
104 |
+
|
105 |
+
has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
|
106 |
+
|
107 |
+
return has_nsfw_concepts
|
108 |
+
|
109 |
+
@torch.no_grad()
|
110 |
+
def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
|
111 |
+
pooled_output = self.vision_model(clip_input)[1] # pooled_output
|
112 |
+
image_embeds = self.visual_projection(pooled_output)
|
113 |
+
|
114 |
+
special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
|
115 |
+
cos_dist = cosine_distance(image_embeds, self.concept_embeds)
|
116 |
+
|
117 |
+
# increase this value to create a stronger `nsfw` filter
|
118 |
+
# at the cost of increasing the possibility of filtering benign images
|
119 |
+
adjustment = 0.0
|
120 |
+
|
121 |
+
special_scores = (
|
122 |
+
special_cos_dist - self.special_care_embeds_weights + adjustment
|
123 |
+
)
|
124 |
+
# special_scores = special_scores.round(decimals=3)
|
125 |
+
special_care = torch.any(special_scores > 0, dim=1)
|
126 |
+
special_adjustment = special_care * 0.01
|
127 |
+
special_adjustment = special_adjustment.unsqueeze(1).expand(
|
128 |
+
-1, cos_dist.shape[1]
|
129 |
+
)
|
130 |
+
|
131 |
+
concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
|
132 |
+
# concept_scores = concept_scores.round(decimals=3)
|
133 |
+
has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
|
134 |
+
|
135 |
+
images[has_nsfw_concepts] = 0.0 # black image
|
136 |
+
|
137 |
+
return images, has_nsfw_concepts
|