Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,6 +6,8 @@ import numpy as np
|
|
| 6 |
from pydub import AudioSegment
|
| 7 |
import tempfile
|
| 8 |
import os
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Model configuration - Using CrisperWhisper for TRUE verbatim transcription
|
| 11 |
# CrisperWhisper is designed to transcribe EVERY word including um, uh, fillers, stutters, false starts
|
|
@@ -109,6 +111,199 @@ def transcribe_audio_chunk(audio_input, task="transcribe", language=None, return
|
|
| 109 |
except Exception as e2:
|
| 110 |
raise Exception(f"Transcription failed: {str(e2)}")
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
def transcribe_audio(audio, task="transcribe", return_timestamps=False, language=None, progress=gr.Progress()):
|
| 113 |
"""
|
| 114 |
Transcribe audio with VERY VERBATIM output using CrisperWhisper.
|
|
@@ -263,75 +458,149 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 263 |
- β
**Accurate Word-Level Timestamps**: Precise timing even around disfluencies
|
| 264 |
- β
**Multilingual**: Supports 99+ languages
|
| 265 |
- β
**Long Audio Support**: Automatic 5-minute chunking
|
|
|
|
| 266 |
|
| 267 |
**Perfect for:** Legal transcription, linguistic research, therapy sessions, interviews,
|
| 268 |
-
conversational AI training, or any use case requiring exact speech capture.
|
| 269 |
"""
|
| 270 |
)
|
| 271 |
|
| 272 |
-
with gr.
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
sources=["upload", "microphone"],
|
| 276 |
-
type="filepath",
|
| 277 |
-
label="Audio Input"
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
with gr.Row():
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
| 294 |
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
)
|
| 310 |
|
| 311 |
gr.Markdown(
|
| 312 |
"""
|
| 313 |
-
### Why CrisperWhisper for Verbatim?
|
| 314 |
-
|
| 315 |
-
**Standard Whisper** is trained to transcribe the "intended meaning" - it automatically cleans up:
|
| 316 |
-
- β Removes "um", "uh", "ah"
|
| 317 |
-
- β Omits false starts
|
| 318 |
-
- β Skips repetitions
|
| 319 |
-
- β Ignores stutters
|
| 320 |
-
|
| 321 |
-
**CrisperWhisper** is specifically trained for verbatim transcription:
|
| 322 |
-
- β
Keeps every filler word
|
| 323 |
-
- β
Preserves all disfluencies
|
| 324 |
-
- β
Captures exact speech patterns
|
| 325 |
-
- β
Accurate timestamps around hesitations
|
| 326 |
-
|
| 327 |
-
### Example Comparison
|
| 328 |
-
|
| 329 |
-
**Input Audio:** "Um, so, uh, I was- I was thinking that, like, we could- we could go to the, uh, the store"
|
| 330 |
-
|
| 331 |
-
**Standard Whisper:** "So I was thinking that we could go to the store"
|
| 332 |
-
|
| 333 |
-
**CrisperWhisper:** "Um, so, uh, I was- I was thinking that, like, we could- we could go to the, uh, the store"
|
| 334 |
-
|
| 335 |
### Use Cases
|
| 336 |
|
| 337 |
- **Legal/Court Transcription**: Exact wording required by law
|
|
@@ -339,7 +608,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 339 |
- **Medical/Therapy Sessions**: Capturing patient speech patterns
|
| 340 |
- **Interview Transcription**: Preserving speaker mannerisms
|
| 341 |
- **Conversational AI Training**: Realistic dialogue data
|
| 342 |
-
- **Accessibility**:
|
|
|
|
| 343 |
- **Language Learning**: Analyzing natural spoken language
|
| 344 |
|
| 345 |
### Tips for Best Results
|
|
@@ -348,20 +618,30 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 348 |
- The model captures quiet speech - ensure consistent audio levels
|
| 349 |
- Manual language selection can improve accuracy
|
| 350 |
- Long files are automatically processed in 5-minute chunks
|
| 351 |
-
-
|
| 352 |
"""
|
| 353 |
)
|
| 354 |
|
| 355 |
-
# Set up event
|
| 356 |
def transcribe_wrapper(audio, task, timestamps, language_name, progress=gr.Progress()):
|
| 357 |
language_code = LANGUAGES[language_name]
|
| 358 |
return transcribe_audio(audio, task, timestamps, language_code, progress)
|
| 359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
transcribe_btn.click(
|
| 361 |
fn=transcribe_wrapper,
|
| 362 |
inputs=[audio_input, task_radio, timestamps_checkbox, language_dropdown],
|
| 363 |
outputs=output_text
|
| 364 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
# Launch the app
|
| 367 |
if __name__ == "__main__":
|
|
|
|
| 6 |
from pydub import AudioSegment
|
| 7 |
import tempfile
|
| 8 |
import os
|
| 9 |
+
from moviepy.editor import VideoFileClip, TextClip, CompositeVideoClip
|
| 10 |
+
import re
|
| 11 |
|
| 12 |
# Model configuration - Using CrisperWhisper for TRUE verbatim transcription
|
| 13 |
# CrisperWhisper is designed to transcribe EVERY word including um, uh, fillers, stutters, false starts
|
|
|
|
| 111 |
except Exception as e2:
|
| 112 |
raise Exception(f"Transcription failed: {str(e2)}")
|
| 113 |
|
| 114 |
+
def create_srt_file(transcription_data, output_path):
|
| 115 |
+
"""
|
| 116 |
+
Create an SRT subtitle file from transcription data.
|
| 117 |
+
"""
|
| 118 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
| 119 |
+
counter = 1
|
| 120 |
+
for item in transcription_data:
|
| 121 |
+
start_time = item['start']
|
| 122 |
+
end_time = item['end']
|
| 123 |
+
text = item['text'].strip()
|
| 124 |
+
|
| 125 |
+
if text: # Only add non-empty subtitles
|
| 126 |
+
# Convert seconds to SRT time format (HH:MM:SS,mmm)
|
| 127 |
+
start_srt = format_timestamp_srt(start_time)
|
| 128 |
+
end_srt = format_timestamp_srt(end_time)
|
| 129 |
+
|
| 130 |
+
f.write(f"{counter}\n")
|
| 131 |
+
f.write(f"{start_srt} --> {end_srt}\n")
|
| 132 |
+
f.write(f"{text}\n\n")
|
| 133 |
+
counter += 1
|
| 134 |
+
|
| 135 |
+
def format_timestamp_srt(seconds):
|
| 136 |
+
"""Convert seconds to SRT timestamp format."""
|
| 137 |
+
hours = int(seconds // 3600)
|
| 138 |
+
minutes = int((seconds % 3600) // 60)
|
| 139 |
+
secs = int(seconds % 60)
|
| 140 |
+
millis = int((seconds % 1) * 1000)
|
| 141 |
+
return f"{hours:02d}:{minutes:02d}:{secs:02d},{millis:03d}"
|
| 142 |
+
|
| 143 |
+
def extract_audio_from_video(video_path):
|
| 144 |
+
"""Extract audio from video file."""
|
| 145 |
+
try:
|
| 146 |
+
video = VideoFileClip(video_path)
|
| 147 |
+
audio_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
|
| 148 |
+
video.audio.write_audiofile(audio_path, codec='pcm_s16le', verbose=False, logger=None)
|
| 149 |
+
video.close()
|
| 150 |
+
return audio_path
|
| 151 |
+
except Exception as e:
|
| 152 |
+
raise Exception(f"Failed to extract audio: {str(e)}")
|
| 153 |
+
|
| 154 |
+
def burn_subtitles_to_video(video_path, transcription_data, progress=gr.Progress()):
|
| 155 |
+
"""
|
| 156 |
+
Burn subtitles directly into the video.
|
| 157 |
+
"""
|
| 158 |
+
try:
|
| 159 |
+
progress(0.1, desc="Loading video...")
|
| 160 |
+
video = VideoFileClip(video_path)
|
| 161 |
+
|
| 162 |
+
progress(0.3, desc="Creating subtitle clips...")
|
| 163 |
+
subtitle_clips = []
|
| 164 |
+
|
| 165 |
+
for item in transcription_data:
|
| 166 |
+
start_time = item['start']
|
| 167 |
+
end_time = item['end']
|
| 168 |
+
text = item['text'].strip()
|
| 169 |
+
|
| 170 |
+
if text and end_time > start_time:
|
| 171 |
+
# Create text clip with styling
|
| 172 |
+
txt_clip = (TextClip(
|
| 173 |
+
text,
|
| 174 |
+
fontsize=40,
|
| 175 |
+
color='white',
|
| 176 |
+
font='Arial-Bold',
|
| 177 |
+
stroke_color='black',
|
| 178 |
+
stroke_width=2,
|
| 179 |
+
method='caption',
|
| 180 |
+
size=(video.w * 0.9, None),
|
| 181 |
+
align='center'
|
| 182 |
+
)
|
| 183 |
+
.set_position(('center', video.h * 0.85))
|
| 184 |
+
.set_start(start_time)
|
| 185 |
+
.set_duration(end_time - start_time))
|
| 186 |
+
|
| 187 |
+
subtitle_clips.append(txt_clip)
|
| 188 |
+
|
| 189 |
+
progress(0.6, desc="Compositing video with subtitles...")
|
| 190 |
+
# Composite video with subtitles
|
| 191 |
+
final_video = CompositeVideoClip([video] + subtitle_clips)
|
| 192 |
+
|
| 193 |
+
progress(0.8, desc="Rendering final video...")
|
| 194 |
+
output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 195 |
+
final_video.write_videofile(
|
| 196 |
+
output_path,
|
| 197 |
+
codec='libx264',
|
| 198 |
+
audio_codec='aac',
|
| 199 |
+
temp_audiofile=tempfile.NamedTemporaryFile(suffix=".m4a", delete=False).name,
|
| 200 |
+
remove_temp=True,
|
| 201 |
+
verbose=False,
|
| 202 |
+
logger=None
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
video.close()
|
| 206 |
+
final_video.close()
|
| 207 |
+
|
| 208 |
+
progress(1.0, desc="Done!")
|
| 209 |
+
return output_path
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
raise Exception(f"Failed to create subtitled video: {str(e)}")
|
| 213 |
+
|
| 214 |
+
@spaces.GPU
|
| 215 |
+
def process_video(video_path, task="transcribe", language=None, subtitle_format="burned", progress=gr.Progress()):
|
| 216 |
+
"""
|
| 217 |
+
Process video: extract audio, transcribe, and add subtitles.
|
| 218 |
+
"""
|
| 219 |
+
if video_path is None:
|
| 220 |
+
return None, "Please provide a video file.", None
|
| 221 |
+
|
| 222 |
+
temp_files = []
|
| 223 |
+
|
| 224 |
+
try:
|
| 225 |
+
# Extract audio from video
|
| 226 |
+
progress(0, desc="Extracting audio from video...")
|
| 227 |
+
audio_path = extract_audio_from_video(video_path)
|
| 228 |
+
temp_files.append(audio_path)
|
| 229 |
+
|
| 230 |
+
# Check audio duration
|
| 231 |
+
duration = get_audio_duration(audio_path)
|
| 232 |
+
chunk_duration = 300 # 5 minutes per chunk
|
| 233 |
+
|
| 234 |
+
if duration and duration > chunk_duration:
|
| 235 |
+
progress(0.1, desc=f"Audio is {duration:.1f}s long. Slicing into chunks...")
|
| 236 |
+
audio_chunks = slice_audio(audio_path, chunk_duration)
|
| 237 |
+
temp_files.extend(audio_chunks)
|
| 238 |
+
else:
|
| 239 |
+
audio_chunks = [audio_path]
|
| 240 |
+
|
| 241 |
+
# Transcribe each chunk with timestamps
|
| 242 |
+
all_transcriptions = []
|
| 243 |
+
total_chunks = len(audio_chunks)
|
| 244 |
+
|
| 245 |
+
for idx, chunk_path in enumerate(audio_chunks):
|
| 246 |
+
progress(0.1 + (idx / total_chunks) * 0.5, desc=f"Transcribing chunk {idx + 1}/{total_chunks}...")
|
| 247 |
+
|
| 248 |
+
result = transcribe_audio_chunk(chunk_path, task, language, return_timestamps=True)
|
| 249 |
+
|
| 250 |
+
if "chunks" in result:
|
| 251 |
+
chunk_offset = idx * chunk_duration
|
| 252 |
+
|
| 253 |
+
for word_chunk in result["chunks"]:
|
| 254 |
+
start = word_chunk["timestamp"][0]
|
| 255 |
+
end = word_chunk["timestamp"][1]
|
| 256 |
+
if start is not None and end is not None:
|
| 257 |
+
all_transcriptions.append({
|
| 258 |
+
"start": start + chunk_offset,
|
| 259 |
+
"end": end + chunk_offset,
|
| 260 |
+
"text": word_chunk["text"]
|
| 261 |
+
})
|
| 262 |
+
|
| 263 |
+
if not all_transcriptions:
|
| 264 |
+
return None, "No transcription data available. Timestamps may have failed.", None
|
| 265 |
+
|
| 266 |
+
# Merge close timestamps for better subtitle readability
|
| 267 |
+
progress(0.6, desc="Optimizing subtitle timing...")
|
| 268 |
+
merged_transcriptions = merge_subtitle_segments(all_transcriptions, max_duration=5.0, max_words=15)
|
| 269 |
+
|
| 270 |
+
# Generate full text transcript
|
| 271 |
+
full_text = " ".join([t["text"] for t in merged_transcriptions])
|
| 272 |
+
transcript_output = f"**Verbatim Transcription:**\n{full_text}\n\n"
|
| 273 |
+
transcript_output += f"*Total duration: {duration:.1f}s | {len(merged_transcriptions)} subtitle segments*"
|
| 274 |
+
|
| 275 |
+
if subtitle_format == "burned":
|
| 276 |
+
# Burn subtitles into video
|
| 277 |
+
progress(0.7, desc="Creating video with burned-in subtitles...")
|
| 278 |
+
output_video = burn_subtitles_to_video(video_path, merged_transcriptions, progress)
|
| 279 |
+
return output_video, transcript_output, None
|
| 280 |
+
|
| 281 |
+
elif subtitle_format == "srt":
|
| 282 |
+
# Create SRT file
|
| 283 |
+
progress(0.7, desc="Creating SRT subtitle file...")
|
| 284 |
+
srt_path = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
|
| 285 |
+
create_srt_file(merged_transcriptions, srt_path)
|
| 286 |
+
return None, transcript_output, srt_path
|
| 287 |
+
|
| 288 |
+
else: # both
|
| 289 |
+
progress(0.7, desc="Creating video with subtitles and SRT file...")
|
| 290 |
+
output_video = burn_subtitles_to_video(video_path, merged_transcriptions, progress)
|
| 291 |
+
srt_path = tempfile.NamedTemporaryFile(suffix=".srt", delete=False).name
|
| 292 |
+
create_srt_file(merged_transcriptions, srt_path)
|
| 293 |
+
return output_video, transcript_output, srt_path
|
| 294 |
+
|
| 295 |
+
except Exception as e:
|
| 296 |
+
return None, f"Error processing video: {str(e)}", None
|
| 297 |
+
|
| 298 |
+
finally:
|
| 299 |
+
# Clean up temporary audio files (keep video and srt outputs)
|
| 300 |
+
for temp_file in temp_files:
|
| 301 |
+
try:
|
| 302 |
+
if os.path.exists(temp_file):
|
| 303 |
+
os.unlink(temp_file)
|
| 304 |
+
except:
|
| 305 |
+
pass
|
| 306 |
+
|
| 307 |
def transcribe_audio(audio, task="transcribe", return_timestamps=False, language=None, progress=gr.Progress()):
|
| 308 |
"""
|
| 309 |
Transcribe audio with VERY VERBATIM output using CrisperWhisper.
|
|
|
|
| 458 |
- β
**Accurate Word-Level Timestamps**: Precise timing even around disfluencies
|
| 459 |
- β
**Multilingual**: Supports 99+ languages
|
| 460 |
- β
**Long Audio Support**: Automatic 5-minute chunking
|
| 461 |
+
- β
**Video Subtitles**: Automatic caption generation with burned-in or SRT output
|
| 462 |
|
| 463 |
**Perfect for:** Legal transcription, linguistic research, therapy sessions, interviews,
|
| 464 |
+
conversational AI training, video subtitling, or any use case requiring exact speech capture.
|
| 465 |
"""
|
| 466 |
)
|
| 467 |
|
| 468 |
+
with gr.Tabs():
|
| 469 |
+
# Audio Tab
|
| 470 |
+
with gr.Tab("π€ Audio Transcription"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
with gr.Row():
|
| 472 |
+
with gr.Column():
|
| 473 |
+
audio_input = gr.Audio(
|
| 474 |
+
sources=["upload", "microphone"],
|
| 475 |
+
type="filepath",
|
| 476 |
+
label="Audio Input"
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
with gr.Row():
|
| 480 |
+
task_radio = gr.Radio(
|
| 481 |
+
choices=["transcribe", "translate"],
|
| 482 |
+
value="transcribe",
|
| 483 |
+
label="Task",
|
| 484 |
+
info="Transcribe verbatim or translate to English"
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
language_dropdown = gr.Dropdown(
|
| 488 |
+
choices=list(LANGUAGES.keys()),
|
| 489 |
+
value="Auto-detect",
|
| 490 |
+
label="Language",
|
| 491 |
+
info="Select language or use auto-detect"
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
timestamps_checkbox = gr.Checkbox(
|
| 495 |
+
label="Show word-level timestamps",
|
| 496 |
+
value=True,
|
| 497 |
+
info="Display precise timing for each word"
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
transcribe_btn = gr.Button("π― Transcribe Verbatim", variant="primary", size="lg")
|
| 501 |
|
| 502 |
+
with gr.Column():
|
| 503 |
+
output_text = gr.Textbox(
|
| 504 |
+
label="Verbatim Transcription (includes all um, uh, hesitations)",
|
| 505 |
+
lines=20,
|
| 506 |
+
show_copy_button=True,
|
| 507 |
+
placeholder="Your VERY verbatim transcription will appear here...\n\nEvery um, uh, stutter, and hesitation will be captured!"
|
| 508 |
+
)
|
| 509 |
|
| 510 |
+
gr.Markdown(
|
| 511 |
+
"""
|
| 512 |
+
### Why CrisperWhisper for Verbatim?
|
| 513 |
+
|
| 514 |
+
**Standard Whisper** is trained to transcribe the "intended meaning" - it automatically cleans up:
|
| 515 |
+
- β Removes "um", "uh", "ah"
|
| 516 |
+
- β Omits false starts
|
| 517 |
+
- β Skips repetitions
|
| 518 |
+
- β Ignores stutters
|
| 519 |
+
|
| 520 |
+
**CrisperWhisper** is specifically trained for verbatim transcription:
|
| 521 |
+
- β
Keeps every filler word
|
| 522 |
+
- β
Preserves all disfluencies
|
| 523 |
+
- β
Captures exact speech patterns
|
| 524 |
+
- β
Accurate timestamps around hesitations
|
| 525 |
+
"""
|
| 526 |
)
|
| 527 |
+
|
| 528 |
+
# Video Tab
|
| 529 |
+
with gr.Tab("π¬ Video Subtitles"):
|
| 530 |
+
with gr.Row():
|
| 531 |
+
with gr.Column():
|
| 532 |
+
video_input = gr.Video(
|
| 533 |
+
label="Video Input",
|
| 534 |
+
sources=["upload"]
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
with gr.Row():
|
| 538 |
+
video_task_radio = gr.Radio(
|
| 539 |
+
choices=["transcribe", "translate"],
|
| 540 |
+
value="transcribe",
|
| 541 |
+
label="Task",
|
| 542 |
+
info="Transcribe verbatim or translate to English"
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
video_language_dropdown = gr.Dropdown(
|
| 546 |
+
choices=list(LANGUAGES.keys()),
|
| 547 |
+
value="Auto-detect",
|
| 548 |
+
label="Language",
|
| 549 |
+
info="Select language or use auto-detect"
|
| 550 |
+
)
|
| 551 |
+
|
| 552 |
+
subtitle_format_radio = gr.Radio(
|
| 553 |
+
choices=[
|
| 554 |
+
("Burned-in subtitles (permanent)", "burned"),
|
| 555 |
+
("SRT file only (external subtitles)", "srt"),
|
| 556 |
+
("Both burned-in video + SRT file", "both")
|
| 557 |
+
],
|
| 558 |
+
value="burned",
|
| 559 |
+
label="Subtitle Format",
|
| 560 |
+
info="Choose output format"
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
process_video_btn = gr.Button("π¬ Generate Subtitles", variant="primary", size="lg")
|
| 564 |
+
|
| 565 |
+
with gr.Column():
|
| 566 |
+
output_video = gr.Video(
|
| 567 |
+
label="Video with Subtitles",
|
| 568 |
+
interactive=False
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
video_transcript = gr.Textbox(
|
| 572 |
+
label="Verbatim Transcript",
|
| 573 |
+
lines=10,
|
| 574 |
+
show_copy_button=True,
|
| 575 |
+
placeholder="Transcript will appear here..."
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
output_srt = gr.File(
|
| 579 |
+
label="Download SRT Subtitles",
|
| 580 |
+
interactive=False
|
| 581 |
+
)
|
| 582 |
|
| 583 |
+
gr.Markdown(
|
| 584 |
+
"""
|
| 585 |
+
### Video Subtitle Features
|
| 586 |
+
|
| 587 |
+
- **Burned-in Subtitles**: Permanently embedded in video (white text with black outline)
|
| 588 |
+
- **SRT File**: External subtitle file compatible with video players and editing software
|
| 589 |
+
- **Verbatim Captions**: All hesitations, fillers, and disfluencies included
|
| 590 |
+
- **Smart Timing**: Automatically merges short segments for readability
|
| 591 |
+
- **Long Video Support**: Handles videos of any length (automatic chunking)
|
| 592 |
+
|
| 593 |
+
### Tips
|
| 594 |
+
|
| 595 |
+
- Use "Burned-in" for sharing videos with guaranteed subtitle visibility
|
| 596 |
+
- Use "SRT file" for flexible editing and translation
|
| 597 |
+
- Use "Both" to have both options available
|
| 598 |
+
- Subtitles are positioned at the bottom center of the video
|
| 599 |
+
"""
|
| 600 |
)
|
| 601 |
|
| 602 |
gr.Markdown(
|
| 603 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 604 |
### Use Cases
|
| 605 |
|
| 606 |
- **Legal/Court Transcription**: Exact wording required by law
|
|
|
|
| 608 |
- **Medical/Therapy Sessions**: Capturing patient speech patterns
|
| 609 |
- **Interview Transcription**: Preserving speaker mannerisms
|
| 610 |
- **Conversational AI Training**: Realistic dialogue data
|
| 611 |
+
- **Accessibility**: Complete transcripts and captions for deaf/hard-of-hearing
|
| 612 |
+
- **Video Content**: YouTube, social media, educational content with accurate captions
|
| 613 |
- **Language Learning**: Analyzing natural spoken language
|
| 614 |
|
| 615 |
### Tips for Best Results
|
|
|
|
| 618 |
- The model captures quiet speech - ensure consistent audio levels
|
| 619 |
- Manual language selection can improve accuracy
|
| 620 |
- Long files are automatically processed in 5-minute chunks
|
| 621 |
+
- For videos, ensure good audio quality for best subtitle accuracy
|
| 622 |
"""
|
| 623 |
)
|
| 624 |
|
| 625 |
+
# Set up event handlers
|
| 626 |
def transcribe_wrapper(audio, task, timestamps, language_name, progress=gr.Progress()):
|
| 627 |
language_code = LANGUAGES[language_name]
|
| 628 |
return transcribe_audio(audio, task, timestamps, language_code, progress)
|
| 629 |
|
| 630 |
+
def video_wrapper(video, task, language_name, subtitle_format, progress=gr.Progress()):
|
| 631 |
+
language_code = LANGUAGES[language_name]
|
| 632 |
+
return process_video(video, task, language_code, subtitle_format, progress)
|
| 633 |
+
|
| 634 |
transcribe_btn.click(
|
| 635 |
fn=transcribe_wrapper,
|
| 636 |
inputs=[audio_input, task_radio, timestamps_checkbox, language_dropdown],
|
| 637 |
outputs=output_text
|
| 638 |
)
|
| 639 |
+
|
| 640 |
+
process_video_btn.click(
|
| 641 |
+
fn=video_wrapper,
|
| 642 |
+
inputs=[video_input, video_task_radio, video_language_dropdown, subtitle_format_radio],
|
| 643 |
+
outputs=[output_video, video_transcript, output_srt]
|
| 644 |
+
)
|
| 645 |
|
| 646 |
# Launch the app
|
| 647 |
if __name__ == "__main__":
|