Spaces:
Runtime error
Runtime error
Sang-Hoon Lee
commited on
Commit
·
6ed416b
1
Parent(s):
6d99823
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import argparse
|
| 4 |
+
import numpy as np
|
| 5 |
+
from scipy.io.wavfile import write
|
| 6 |
+
import torchaudio
|
| 7 |
+
import utils
|
| 8 |
+
from Mels_preprocess import MelSpectrogramFixed
|
| 9 |
+
|
| 10 |
+
from hierspeechpp_speechsynthesizer import (
|
| 11 |
+
SynthesizerTrn
|
| 12 |
+
)
|
| 13 |
+
from ttv_v1.text import text_to_sequence
|
| 14 |
+
from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
|
| 15 |
+
from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
|
| 16 |
+
from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
|
| 17 |
+
from denoiser.generator import MPNet
|
| 18 |
+
from denoiser.infer import denoise
|
| 19 |
+
|
| 20 |
+
import gradio as gr
|
| 21 |
+
|
| 22 |
+
def load_text(fp):
|
| 23 |
+
with open(fp, 'r') as f:
|
| 24 |
+
filelist = [line.strip() for line in f.readlines()]
|
| 25 |
+
return filelist
|
| 26 |
+
def load_checkpoint(filepath, device):
|
| 27 |
+
print(filepath)
|
| 28 |
+
assert os.path.isfile(filepath)
|
| 29 |
+
print("Loading '{}'".format(filepath))
|
| 30 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
| 31 |
+
print("Complete.")
|
| 32 |
+
return checkpoint_dict
|
| 33 |
+
def get_param_num(model):
|
| 34 |
+
num_param = sum(param.numel() for param in model.parameters())
|
| 35 |
+
return num_param
|
| 36 |
+
def intersperse(lst, item):
|
| 37 |
+
result = [item] * (len(lst) * 2 + 1)
|
| 38 |
+
result[1::2] = lst
|
| 39 |
+
return result
|
| 40 |
+
def add_blank_token(text):
|
| 41 |
+
|
| 42 |
+
text_norm = intersperse(text, 0)
|
| 43 |
+
text_norm = torch.LongTensor(text_norm)
|
| 44 |
+
return text_norm
|
| 45 |
+
|
| 46 |
+
def tts(text,
|
| 47 |
+
prompt,
|
| 48 |
+
ttv_temperature,
|
| 49 |
+
vc_temperature,
|
| 50 |
+
duratuion_temperature,
|
| 51 |
+
duratuion_length,
|
| 52 |
+
denoise_ratio,
|
| 53 |
+
random_seed):
|
| 54 |
+
|
| 55 |
+
torch.manual_seed(random_seed)
|
| 56 |
+
torch.cuda.manual_seed(random_seed)
|
| 57 |
+
np.random.seed(random_seed)
|
| 58 |
+
|
| 59 |
+
text_len = len(text)
|
| 60 |
+
if text_len > 200:
|
| 61 |
+
raise gr.Error("Text length limited to 200 characters for this demo. Current text length is " + str(text_len))
|
| 62 |
+
|
| 63 |
+
else:
|
| 64 |
+
text = text_to_sequence(str(text), ["english_cleaners2"])
|
| 65 |
+
|
| 66 |
+
token = add_blank_token(text).unsqueeze(0).cuda()
|
| 67 |
+
token_length = torch.LongTensor([token.size(-1)]).cuda()
|
| 68 |
+
|
| 69 |
+
# Prompt load
|
| 70 |
+
# sample_rate, audio = prompt
|
| 71 |
+
# audio = torch.FloatTensor([audio]).cuda()
|
| 72 |
+
# if audio.shape[0] != 1:
|
| 73 |
+
# audio = audio[:1,:]
|
| 74 |
+
# audio = audio / 32768
|
| 75 |
+
audio, sample_rate = torchaudio.load(prompt)
|
| 76 |
+
|
| 77 |
+
# support only single channel
|
| 78 |
+
|
| 79 |
+
# Resampling
|
| 80 |
+
if sample_rate != 16000:
|
| 81 |
+
audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
|
| 82 |
+
|
| 83 |
+
# We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
|
| 84 |
+
ori_prompt_len = audio.shape[-1]
|
| 85 |
+
p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
|
| 86 |
+
audio = torch.nn.functional.pad(audio, (0, p), mode='constant').data
|
| 87 |
+
|
| 88 |
+
# If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
|
| 89 |
+
# We will have a plan to replace a memory-efficient denoiser
|
| 90 |
+
if denoise == 0:
|
| 91 |
+
audio = torch.cat([audio.cuda(), audio.cuda()], dim=0)
|
| 92 |
+
else:
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
|
| 95 |
+
if ori_prompt_len > 80000:
|
| 96 |
+
denoised_audio = []
|
| 97 |
+
for i in range((ori_prompt_len//80000)):
|
| 98 |
+
denoised_audio.append(denoise(audio.squeeze(0).cuda()[i*80000:(i+1)*80000], denoiser, hps_denoiser))
|
| 99 |
+
|
| 100 |
+
denoised_audio.append(denoise(audio.squeeze(0).cuda()[(i+1)*80000:], denoiser, hps_denoiser))
|
| 101 |
+
denoised_audio = torch.cat(denoised_audio, dim=1)
|
| 102 |
+
else:
|
| 103 |
+
denoised_audio = denoise(audio.squeeze(0).cuda(), denoiser, hps_denoiser)
|
| 104 |
+
|
| 105 |
+
audio = torch.cat([audio.cuda(), denoised_audio[:,:audio.shape[-1]]], dim=0)
|
| 106 |
+
|
| 107 |
+
audio = audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
|
| 108 |
+
|
| 109 |
+
if audio.shape[-1]<48000:
|
| 110 |
+
audio = torch.cat([audio,audio,audio,audio,audio], dim=1)
|
| 111 |
+
|
| 112 |
+
src_mel = mel_fn(audio.cuda())
|
| 113 |
+
|
| 114 |
+
src_length = torch.LongTensor([src_mel.size(2)]).to(device)
|
| 115 |
+
src_length2 = torch.cat([src_length,src_length], dim=0)
|
| 116 |
+
|
| 117 |
+
## TTV (Text --> W2V, F0)
|
| 118 |
+
with torch.no_grad():
|
| 119 |
+
w2v_x, pitch = text2w2v.infer_noise_control(token, token_length, src_mel, src_length2,
|
| 120 |
+
noise_scale=ttv_temperature, noise_scale_w=duratuion_temperature,
|
| 121 |
+
length_scale=duratuion_length, denoise_ratio=denoise_ratio)
|
| 122 |
+
src_length = torch.LongTensor([w2v_x.size(2)]).cuda()
|
| 123 |
+
|
| 124 |
+
pitch[pitch<torch.log(torch.tensor([55]).cuda())] = 0
|
| 125 |
+
|
| 126 |
+
## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
|
| 127 |
+
converted_audio = \
|
| 128 |
+
net_g.voice_conversion_noise_control(w2v_x, src_length, src_mel, src_length2, pitch, noise_scale=vc_temperature, denoise_ratio=denoise_ratio)
|
| 129 |
+
|
| 130 |
+
converted_audio = speechsr(converted_audio)
|
| 131 |
+
|
| 132 |
+
converted_audio = converted_audio.squeeze()
|
| 133 |
+
|
| 134 |
+
converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
|
| 135 |
+
converted_audio = converted_audio.cpu().numpy().astype('int16')
|
| 136 |
+
|
| 137 |
+
write('output.wav', 48000, converted_audio)
|
| 138 |
+
return 'output.wav'
|
| 139 |
+
|
| 140 |
+
def main():
|
| 141 |
+
print('Initializing Inference Process..')
|
| 142 |
+
|
| 143 |
+
parser = argparse.ArgumentParser()
|
| 144 |
+
parser.add_argument('--input_prompt', default='example/steve-jobs-2005.wav')
|
| 145 |
+
parser.add_argument('--input_txt', default='example/abstract.txt')
|
| 146 |
+
parser.add_argument('--output_dir', default='output')
|
| 147 |
+
parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
|
| 148 |
+
parser.add_argument('--ckpt_text2w2v', '-ct', help='text2w2v checkpoint path', default='./logs/ttv_libritts_v1/ttv_lt960_ckpt.pth')
|
| 149 |
+
parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
|
| 150 |
+
parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
|
| 151 |
+
parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
|
| 152 |
+
parser.add_argument('--scale_norm', type=str, default='max')
|
| 153 |
+
parser.add_argument('--output_sr', type=float, default=48000)
|
| 154 |
+
parser.add_argument('--noise_scale_ttv', type=float,
|
| 155 |
+
default=0.333)
|
| 156 |
+
parser.add_argument('--noise_scale_vc', type=float,
|
| 157 |
+
default=0.333)
|
| 158 |
+
parser.add_argument('--denoise_ratio', type=float,
|
| 159 |
+
default=0.8)
|
| 160 |
+
parser.add_argument('--duration_ratio', type=float,
|
| 161 |
+
default=0.8)
|
| 162 |
+
parser.add_argument('--seed', type=int,
|
| 163 |
+
default=1111)
|
| 164 |
+
a = parser.parse_args()
|
| 165 |
+
|
| 166 |
+
global device, hps, hps_t2w2v,h_sr,h_sr48, hps_denoiser
|
| 167 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 168 |
+
|
| 169 |
+
hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
|
| 170 |
+
hps_t2w2v = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_text2w2v)[0], 'config.json'))
|
| 171 |
+
h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
|
| 172 |
+
h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
|
| 173 |
+
hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
|
| 174 |
+
|
| 175 |
+
global mel_fn, net_g, text2w2v, speechsr, denoiser
|
| 176 |
+
|
| 177 |
+
mel_fn = MelSpectrogramFixed(
|
| 178 |
+
sample_rate=hps.data.sampling_rate,
|
| 179 |
+
n_fft=hps.data.filter_length,
|
| 180 |
+
win_length=hps.data.win_length,
|
| 181 |
+
hop_length=hps.data.hop_length,
|
| 182 |
+
f_min=hps.data.mel_fmin,
|
| 183 |
+
f_max=hps.data.mel_fmax,
|
| 184 |
+
n_mels=hps.data.n_mel_channels,
|
| 185 |
+
window_fn=torch.hann_window
|
| 186 |
+
).cuda()
|
| 187 |
+
|
| 188 |
+
net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
|
| 189 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 190 |
+
**hps.model).cuda()
|
| 191 |
+
net_g.load_state_dict(torch.load(a.ckpt))
|
| 192 |
+
_ = net_g.eval()
|
| 193 |
+
|
| 194 |
+
text2w2v = Text2W2V(hps.data.filter_length // 2 + 1,
|
| 195 |
+
hps.train.segment_size // hps.data.hop_length,
|
| 196 |
+
**hps_t2w2v.model).cuda()
|
| 197 |
+
text2w2v.load_state_dict(torch.load(a.ckpt_text2w2v))
|
| 198 |
+
text2w2v.eval()
|
| 199 |
+
|
| 200 |
+
speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
|
| 201 |
+
h_sr48.train.segment_size // h_sr48.data.hop_length,
|
| 202 |
+
**h_sr48.model).cuda()
|
| 203 |
+
utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
|
| 204 |
+
speechsr.eval()
|
| 205 |
+
|
| 206 |
+
denoiser = MPNet(hps_denoiser).cuda()
|
| 207 |
+
state_dict = load_checkpoint(a.denoiser_ckpt, device)
|
| 208 |
+
denoiser.load_state_dict(state_dict['generator'])
|
| 209 |
+
denoiser.eval()
|
| 210 |
+
|
| 211 |
+
demo_play = gr.Interface(fn = tts,
|
| 212 |
+
inputs = [gr.Textbox(max_lines=6, label="Input Text", value="HierSpeech is a zero shot speech synthesis model, which can generate high-quality audio", info="Up to 200 characters"),
|
| 213 |
+
gr.Audio(type='filepath', value="./example/3_rick_gt.wav"),
|
| 214 |
+
gr.Slider(0,1,0.333),
|
| 215 |
+
gr.Slider(0,1,0.333),
|
| 216 |
+
gr.Slider(0,1,1.0),
|
| 217 |
+
gr.Slider(0.5,2,1.0),
|
| 218 |
+
gr.Slider(0,1,0),
|
| 219 |
+
gr.Slider(0,9999,1111)],
|
| 220 |
+
outputs = 'audio',
|
| 221 |
+
title = 'HierSpeech++',
|
| 222 |
+
description = '''<div>
|
| 223 |
+
<p style="text-align: left"> HierSpeech++ is a zero-shot speech synthesis model.</p>
|
| 224 |
+
<p style="text-align: left"> Our model is trained with LibriTTS dataset so this model only supports english. We will release a multi-lingual HierSpeech++ soon.</p>
|
| 225 |
+
<p style="text-align: left"> <a href="https://sh-lee-prml.github.io/HierSpeechpp-demo/">[Demo Page]</a> <a href="https://github.com/sh-lee-prml/HierSpeechpp">[Source Code]</a></p>
|
| 226 |
+
</div>''',
|
| 227 |
+
examples=[["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/3_rick_gt.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
| 228 |
+
["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/ex01_whisper_00359.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
| 229 |
+
["Hi there, I'm your new voice clone. Try your best to upload quality audio", "./example/female.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
| 230 |
+
["Hello I'm HierSpeech++", "./example/reference_1.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
|
| 231 |
+
]
|
| 232 |
+
)
|
| 233 |
+
demo_play.launch(share=True, server_port=8888)
|
| 234 |
+
|
| 235 |
+
if __name__ == '__main__':
|
| 236 |
+
main()
|